PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and computational analysis of granular material flow in model silos

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study described here was undertaken to explore the phenomena occurring in silo problems. For these problems, no experimental results exist, but simpler tests for validation can be used. This book identifies theses phenomena which are presented in two chapters. The first presents experimental investigations of granular material flows with a detailed description of phenomena occurring during filling and discharge processes in silo models. It also pertains to empirical descriptions of velocities and flow rates considered via statistical analysis. The experiments were conducted using a Digital Particle Image Velocimetry Optical Flow (DPIV OF). Applying this innovative technique allowed the obtaining and identification of a large volume of quantitative data characterizing the granular material flow, such as, velocities patterns within granular material, outflow rate, deformations, strains, dilation and stagnant zones boundaries; especially in the eccentric modes of flows for the plane silo models. The chapter also includes the analysis on verification of a Radial Flow assumption. The new mathematical description of kinematic parameter b for radial flow was applied with new formula for defining velocities in radial flows. Furthermore, the DPIV technique was applied to verify mass and volume conservation in the flowing material. The results obtained in this chapter serve as the basis of further verification via numerical simulations made by the Discrete Element Method (DEM). Hence, the second Chapter discusses implementation of DEM in simulation of the processes observed during the performed experiments. The presented DEM mathematical model was applied to verify the wall stress distributions, this is presented first with a limited number of particles and then with an increased number of particles. This approach made it possible to verify parameters or indicators derived from the well-known continuum-based methods. The computational analyses presented also provides a micromedianical insight into the filling and discharge of the granular materials in the 3D silo models. In particular, this chapter deals with the results of investigation of such specific phenomena known as "a free-fall arch", material dilation forming, porosity fields evolution, distribution of stress within the granular material, outflow rates and velocity profiles. The key finding of the analysis was the comparison of the measured wall pressure distribution in the experiments with those obtained numerically with DEM, Janssen solution and the Standard Eurocod 1. It was particularly demonstrated that the wall pressure calculated by the recommended formula in the design Standard gives lower values than those obtained from the experimental measurements. While a well known Janssen's theory cannot be expected to represent pressures during silo discharge. Also, the analysis of the influence of rolling friction on wall pressure and velocities distributions within the flowing granular material were considered in detail. Such important phenomena like a "pressure switch" were also successfully captured numerically and experimentally during the discharge process. Finally, the general conclusions arising from the study appear to be very useful for the designers of silo structures one of the most difficult tasks in the field of civil engineering.
PL
Podstawowym celem pracy jest opisanie zjawisk występujących w procesach technologicznych w silosach. Z uwagi na brak badań eksperymentalnych silosów w skali naturalnej badania tych zjawisk przeprowadza się w skali laboratoryjnej. W książce podjęto próbę zidentyfikowania niniejszych zjawisk a wyniki prac podano w dwóch odrębnych rozdziałach. Pierwszy z nich przedstawia wyniki badań eksperymentalnych płynięcia materiałów ziarnistych w czasie napełniania i opróżniania modelów silosu. Rozdział ten zawiera również empiryczne opisy prędkości i analizę wydatków wypływu wykonane metodami analizy statystycznej. Obrazy płynięcia materiału ziarnistego w modelach rejestrowano techniką cyfrową Digital Particle Image Velocimetry, Optical Flow, tzw. potokami optycznymi (DPIV OF). Zastosowanie tej innowacyjnej techniki pozwoliło na uzyskanie dużej ilości danych ilościowych charakteryzujących przepływy materiałów ziarnistych, takich jak: profile prędkości płynącego materiału ziarnistego, wartości wydatku wypływu, deformacje, odkształcenia, zakres stref zastoju w przepływach symetrycznych i niecentrycznych w płaskich modelach silosów. Rozdział pierwszy przedstawia również analizę weryfikacji założenia przepływu radialnego, gdzie podano nowy opis matematyczny parametru kinematycznego b dla przepływu radialnego, zastosowano nową formułę określenia prędkości w przepływach radialnych. Dzięki technice DPIV dokonano weryfikacji prawa zachowania masy i objętości w płynącym materiale. Wyniki przedstawione w tym rozdziale stały się podstawą do dalszej weryfikacji poprzez symulacje numeryczne wykonane metodą elementów dyskretnych (DEM). Rozdział drugi omawia zastosowanie metody DEM do symulacji procesów zarejestrowanych w czasie eksperymentów. Przedstawiony model matematyczny DEM wykorzystano do weryfikacji rozkładu naporów w ścianie, w pierwszej fazie analizy z mniejszą liczbą cząstek, a następnie z większą liczbą cząsteczek. Takie podejście pozwoliło na dokonanie oceny porównawczej różnych parametrów ze 8 Streszczenie znanymi rozwiązaniami mechaniki continuum oraz na zastosowanie podejścia mikromechaniki na ocenę procesów napełniania i opróżniania w trójwymiarowych modelach silosów. W rozdziale tym dalej omówiono wyniki symulacji konkretnych zjawisk, takich jak tworzące się zawieszenia w materiale, kształtowanie się stref rozluźniania materiału, ewolucję pola porowatości, rozkłady naprężeń w materiale, wartości wydatku wpływu i kształty profili prędkości. Finalnym ważkim wynikiem analizy było porównanie rozkładu ciśnienia pomierzonego eksperymentalnie w ścianie z wynikami analizy numerycznej metodą elementów dyskretnych DEM, a następnie z rozwiązaniem Janssena oraz zaleceniami normy Eurocod 1. Wykazano, że ciśnienie powstałe w ścianie w wyniku naporu materiału obliczone zgodnie z normą Eurokod 1 przedstawia niższe wartości niż te, które otrzymano w trakcie eksperymentów, a rozwiązanie Janssena nie podaje wartości ciśnień w czasie opróżniania silosu. Nadto, podano analizę wpływu tarcia tocznego na ciśnienia w ścianie i na rozkłady prędkości oraz zjawisko powstania „skoku ciśnień” w ścianie. W końcowej części monografii podano wnioski wypływające z badań, które mogą posłużyć projektantom konstrukcji silosów – jednym z najtrudniejszych zadań w zakresie inżynierii lądowej i wodnej
Rocznik
Tom
Strony
1--317
Opis fizyczny
Bibliogr. 320 poz., rys.
Twórcy
  • Vilnius Gediminas Technical University
  • Vilnius Gediminas Technical University
Bibliografia
  • 1. A. W. Jenike. Gravity Flow of Bulk Solids. University of Utah EngineeringExperiment Station, Bulletin 108, USA, 1961.
  • 2. A. Drescher. Analytical Methods in Bin-load Analysis. Elsevier, Amsterdam, 1991.
  • 3. A. W. Jenike, J. R. Johanson. Bin Loads. Journal of the Structural Division, ASCE, 94(4), 1968.
  • 4. A. W. Jenike, J. R. Johanson. On the theory of bin loads, Transactions ASME. 91, Ser. B, 2, 339-344, 1969.
  • 5. J. W. Carson, Silo failures: Case histories and lessons learned. Third Israeli Conference for Conveying and Handling of Particulate Solids, Dead Sea Israel, May, 2000.
  • 6. J. F. Chen, J. M. Rotter, J. Y. Ooi, Z. Zhong. Flow patterns measurement in a full scale silo containing iron ore, Chemical Engineering Science, 60, 3029-3041, 2005.
  • 7. J. Nielsen, V. Askegaard. Scale errors in model tests in granular media with special reference to silo models. Powder Technology, 16, 1, 123-130, 1977.
  • 8. H. E. Wright, G. F. Cudahy , J. T. Van Kuren. Degradation of laser beam by a twodimensional turbulent jet. AIAA Journal, 17, 10, 1091-1097, 1979.
  • 9. J. Nielsen, N. O. Kristiansen. Related measurements of pressure condition in full scale barley silo and in silo model. Proc. of the International Conference on Design of Silos for Strength and Flow, University of Lancaster, Powder Advisory Centre, September, 1980.
  • 10. J. Munch-Andersen, J. Nielsen. Size effects in large grain silos. Bulk Solids Handling, 6, 885-889, 1986.
  • 11. J. Nielsen. Pressures from flowing granular solids in silos. Philosophical Transactions of the Royal Society of London. Series A, Mathematical Physical, and Engineering Sciences 356 (1747), 2667-2684, 1998.
  • 12. A. Borcz, M. Maj. Experimental Research on Loose Material Pressure and Temperature Distribution in Full Scale Silos. Proceedings of International Symposium – Reliable Flow of Particulate Solids II, Oslo, Norway, 23-25 August, 763-768, 1993 .
  • 13. A. Łapko. Efekty oddziaływania materiału sypkiego na żelbetowe ściany komór w eksploatowanych silosach na zboże. Nauki Techniczne, 71, Białystok Technical University, 224, 1989.
  • 14. J. Tejchman. Silo Quake-Measurement, A Numerical Polar Approach and a Way for its Suppression. Proc. International Conference on Advances in Steel Structures, Hong Kong, 11-14 December, 795-800, 1996.
  • 15. M. Kamiński. Untersuchungen des Zuckerdrucks in Silos: Tl 1. Symmetrische Entleerung und Einfluss der Fullart. Zuckerindustrie, Jg. 111, 7, 649-655, 1986.
  • 16. M. Kamiński. Badania naporu bezkohezyjnych materiałów sypkich w silosach. Prace Naukowe Instytutu Budownictwa Politechniki Wrocławskiej. Wrocław, 253, 1986.
  • 17. M. Kamiński. Determining the pressure of sugar stored in silos, Bulk Solids Handling, 9, 1, 33-41, 1989.
  • 18. M. Kamiński, H. Hamadeh. Experimental investigation on funnel flow and wall pressure variation in silos. Powder Handling and Processing, 6, 4, 1-5, 1994.
  • 19. M. Kamiński, H. Hamadeh. Measurement of pressure distribution inside the Silo Model. Powder Handling & Processing, 8, 2, 153-154, 1996.
  • 20. M. Kamiński, R. Antonowicz. Pressure of bulk solids and reducing increase in pressure during silo discharge. Powder Handling and Processing, 12, 3, 271-276, 2000.
  • 21. K. Diamountene, M. Kamiński. Studies of pressures in full-scale silos. Bulk Solids Handling, 23, 6, 1-5, 2003.
  • 22. M. Kamiński, M. Maj. A method of measure bulk solids pressure against silo wall in models and full scale silos. The 4th International Conference for Conveying and Handling of Particulate Solids. Proceedings. ORTRA, Budapest, May 27-30, Vol. 1, Eds. H. Kalman, J. Gyenis. p 6-107 – 6-112, 2003.
  • 23. J. F. Chen, J. M. Rotter, J. Y. Ooi. A Review of Numerical Prediction Methods for Silo Wall Pressures. Advances in Structural Engineering, 2, 2, 119-135, 1999.
  • 24. J. M. Rotter, J. Y. Ooi, C. Lauder, I. Coker, J. F. Chen, B. G. Dale. A study on a flow patterns in an industrial silo. Proc. of the International Symposium on Reliable Flow Particulate Solids, II EFChE Publ., S 96, Oslo, 517-524, 1993.
  • 25. A. Medina, J. Andrade, J. A. Cordova, C. Treviño. Gravity induced in granular flow measurements in a 2D silo with a lateral bottom exit. Physics Letters A, 273, 109-116, 1998.
  • 26. A. Medina, J. A. Córdova, e. Luna, c. Treviño. Velocity field measurements in granular gravity flow in a near 2D silo. Physics Letters A, 250, 111-116, 1998.
  • 27. R. M. Lueptow, A. Akonur, T. Shinbrot. PIV for granular flow. Experiments in Fluids, 28, 2, 183-186, 2000.
  • 28. A. J. Waters, A. Drescher. Modelling plug flow in bins/hoppers. Powder Technology, 113, 168-175, 2000.
  • 29. M. Ostendorf, J. Schwedes. Application of optical measurement techniques on the investigation of bulk solids flow behaviour in silos. International Congress for Particle Technology, Partec 2004, Nüremberg, Germany, 16-18 March, 2004.
  • 30. M. Ostendorf, J. Schwedes. Application of Particle Image Velocimetry for velocity measurements during silo discharge, Powder Technology, 158, 69-75, 2005.
  • 31. I. Sielamowicz, T. A. Kowalewski. DPIV technique in modelling granular material flow in a model of silo made of Plexiglas. International Congress for Particle Technology, PARTEC2004, Nüremberg, Germany, 16-18 March, 2004.
  • 32. J. U. Böhrnsen, H. Antes, M. Ostendorf, J. Schwedes. Silo discharge: Measurement and Simulation of Dynamic Behaviour in Bulk Solids. Chemical Engineering Technology, 27, 71-76, 2004.
  • 33. M. Niedostatkiewicz, J. Tejchman. Application of a particle image velocimetry technique for deformation measurements of bulk solids during silo flow. Powder Handling and Processing, 17, 4, 216-220, 2005.
  • 34. I. Sielamowicz. Experimental analysis of granular material flows using the technique of digital particle image velocimetry. Engineering Transactions, 53, 2, 195-227, 2005.
  • 35. I. Sielamowicz, S. Błoński, T. A. Kowalewski. Optical Technique DPIV in Measurements of Granular Material Flow, Part 1 of 3. Chemical Engineering Science, 60, 2, 589-598, 2005.
  • 36. I. Sielamowicz, S. Błoński, T. A. Kowalewski. Optical Technique DPIV in Measurements of Granular Material Flow, Part 2 of 3 – Converging Hoppers. Chemical Engineering Science, 61, 5307-5317, 2006.
  • 37. C. Słonimski, M. Niedostatkiewicz, J. Tejchman. Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technology, 173, 1-18, 2007.
  • 38. D. A. Steingart, J. W. Evans. Measurements of granular flow in two-dimensional hoppers by particle image velocimetry. Part I: experimental method and results. Chemical Engineering Science, 60, 1043-1051, 2005.
  • 39. G. W. Baxter, R. P. Behringer, T. Faggert, G. A. Johnson. Phys. Rev. Lett. 62, 2825, 1989.
  • 40. P. Evesque, J. Rajchenbach. Statistics of glass sphere avalanches in a partly filled rotating cylinder. Powder and Grains. ed. J. Biarez, R. Gourves, Balkema, Rotterdam, 214-224, 1989.
  • 41. E. Clement, J. Duran, J. Rajchenbach. Experimental study of heaping in a two-dimensional ‘‘sand pile’’. Phys. Rev. Lett. 69, 1189–1192, 1992.
  • 42. J. Duran, T. Mazozi, E. Clément, J. Rajchenbach. Size segregation in a two-dimensional sandpile: Convection and arching effects, Phys. Rev. E 50, 5138, 1994.
  • 43. H. K. Pak, R. P. Behringer. „Bubbling in vertically vibrated granular materials”. Nature 371, 231-233, 1994.
  • 44. R. J. Adrian. Particle imaging technique for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23, 261-304, 1991.
  • 45. R. Kvapil. Theorie der Schuttgutbewegung. VEB Verlag Technik, Berlin, 1959.
  • 46. P. M. Blair-Fish, P. L. Bransby. Flow patterns and wall stresses in a mass-flow bunker. Journal of Engineering for Industry, 95, 17-26, 1973.
  • 47. A. Drescher, T. W. Cousens, P. L. Bransby. Kinematics of the mass flow of granular material through a plane hopper. Geotechnique, 28, 1, 27-42, 1978.
  • 48. J. Y. Ooi, J. F. Chen, J. M. Rotter. Measurement of solids flow patterns in a gypsum silo. Powder Technology, 99, 3, 272-284, 1998.
  • 49. M. Nakagawa, S. A. Altobelli, A. Caprihan, E. Fukushima, E.-K. Jeong. Non-invasive measurements of granular flows by Magnetic Resonance Imaging. Exp Fluids, 16: 54-60, 1993.
  • 50. E. E. Ehrichs, H. M. Jaeger, G. S. Karczmar, J. B. Knight, V. Yu. Kuperman, S. R. Nagel. Science 267, 1632, 1995.
  • 51. C. F. Harwood. Powder segregation due to vibration. Powder Technology, 16, 51-57, 1997.
  • 52. M. Chinaud, T. Delaunay, Ph. Tordjeman. An experimental study of particle sedimenta-tion using ultrasonic speckle velocimetry. Measurement Science and Technology, 21, 2010.
  • 53. L. Hesselink. Digital image processing in flow visualization. Annual Review of Fluids Mechanics, 20, 421-485, 1988.
  • 54. J. Westerweel. Digital particle image velocimetry – theory and application. Delft University Press, 1993.
  • 55. C. E. Willert, M. Gharib. Digital particle image velocimetry. Experiments in Fluids, 10, 181-193, 1991.
  • 56. L. Lourenco, A. Krothapalii. On the accuracy of velocity and vorticity measurements with PIV. Experiments in Fluids, 18, 421-428, 1995.
  • 57. J. H. Sun, D. A. Yates, D. E. Winterbone. Measurements of the flow field in a diesel engine combusection chamber after combusection by cross-correlation of high-speed photographs. Experiments in Fluids, 20, 335-345, 1996.
  • 58. H. T. Huang, H. E. Fiedler, J. J. Wang. Limitation and improvement of PIV. Part I: Limitation of conventional techniques due to deformation of particle image patterns. Experiments in Fluids, 15, 168-174, 1993.
  • 59. P. T. Tokumaru, P. E. Dimotakis. Image correlation velocimetry. Experiments in Fluids, 19, 1-15, 1995.
  • 60. L. G. Gui, W. Merzkirch. A method of tracking ensembles of particle images. Experiments in Fluids, 21, 465-468, 1996.
  • 61. G. M. Quenot, J. Pakleza, T. A. Kowalewski. Particle image velocimetry with optical flow. Experiments in Fluids, 25, 177-189, 1998.
  • 62. M. Raffel, Ch. E. Willert, J. T. Kompenhans. Particle image velocimetry: a practical guide, Berlin, 1998.
  • 63. S. W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical Publishing, 1997.
  • 64. M. A. Sutton, S. R. McNeill, J. D. Helm, J. Y. Chao. Advances in Two-Dimensional and Three-Dimensional Computer Vision. Topics in Applied Physics, Springer Berlin / Heidelberg, 77, 323, 2000.
  • 65. K. Nübel. Experimental and numerical investigation of shear localization in granular materials. Publication Series of the Institute of Soil and Rock Mechanics, 62, University Karlsruhe, 2002.
  • 66. D. J. White, W. A. Take,M. D. Bolton. Soil deformation measurements using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53, 7, 619-631. 2003.
  • 67. K. Hutter, N. Kuerchner. PIV for granular avalanches, Dynamical Response of Granular and Powder Materials in Large and Catastrophic Deformations. Springer, 2003.
  • 68. A. L. Rechenmacher. 2006 Grain-scale processes governing shear band initia-tion and evolution in sands. Journal of the Mechanics and Physics of Solids, 54, 1, 22-45, 2006.
  • 69. W. C. Kohse. Experimentell Untersuchung von Scherfugenmustern in Granulaten, Diplomarbeit, Institute for Soil and Rock Mechanics, University of Karlsruhe, 1-42, 2002.
  • 70. G. R. Watson, J. M. Rotter. A finite element kinematic analysis of planar granular solids flow. Chemical Engineering Science, 51, 3967-3978, 1996.
  • 71. R. M. Nedderman. The use of the kinematic model to predict the development of the stagnant zone boundary in the batch discharge of a bunker. Chemical Engineering Science, 50, 6, 959-965, 1995.
  • 72. J. A. S. Cleaver, R. M. Nedderman. The measurement of velocity profiles in conical hoppers. Chemical Engineering Science, 48, 21, 3703-3712, 1993.
  • 73. J. S. Giunta. Flow patterns of granular materials in flat-bottom bins. Journal of Engineering for Industry, Transactions of the ASME, 91, 406-413, 1969.
  • 74. H. Takahashi, H. Yanai. Flow profile and void fraction of granular solids in a moving bed. Powder Technology, 7, 205-214, 1973.
  • 75. T. V. Nguyen, C. Brennen, R. H. Sabersky. Gravity flow of granular materials in conical hoppers. Journal of Applied Mechanics, Transactions of the ASME, 46, 529-535, 1979.
  • 76. J. Tejchman. Behaviour of a Granular Medium in a Silo – Model Tests in a Plane Silo with Parallel Walls. Part I. Archives of Civil Engineering, XXXVII, 4, 1993.
  • 77. U. Tüzün, R. M. Nedderman. Investigation of the flow boundary during steady-state discharge from a funnel-flow bunker. Powder Technology, 31, 1, 27-43, 1982.
  • 78. D. P. Graham, A. R. Tait, R. S. Wadmore. Measurement and prediction of flow patterns of granular solids in cylindrical vessels, Powder Technology, 50, 1, 66-76, 1987.
  • 79. K. F. Zhang, J. Y. Ooi. A kinematic model for solids flow in flat-bottomed silos. Geotechnique, 48, 4, 545-553, 1988.
  • 80. R. Hill. The Mathematical Theory of Plasticity. Clarendon Press, Oxford, 1950.
  • 81. W. Prager, P. G. Hodge. Theory of Perfectly Plastic Solids. Dover Publ., New York, 1968.
  • 82. J. Salençon. Applications of the theory of plasticity in soil mechanics, Wiley New York, 1977.
  • 83. J. Litwiniszyn J. Statistical methods in the mechanics of granular bodies. Rheologica Acta, 1, 2-3, 146-150, 1958.
  • 84. J. Litwiniszyn. The model of a random walk of particles adopted to researches on problem of mechanics of loose media. Bulletin l’Academie Polonaise Sciences, 11, 61-70, 1963.
  • 85. W. W. Mullins. Stochastic theory of particle flow under gravity, Journal of Applied Physics, 43, 665-677, 1972.
  • 86. W. M. Mullins. Critique and comparison of two stochastic theories of gravity-induced particle flow. Powder Technology, 23, 115-119, 1979.
  • 87. R. M. Nedderman, U. Tüzün. A kinematic model for the flow of granular materials. Powder Technology, 22, 243-253, 1979.
  • 88. U. Tüzün, G. T. Houlsby, R. M. Nedderman, S. B. Savage. The flow of granular materials-II Velocity distribution in slow flow. Chemical Engineering Science, 37, 1691-1709, 1982.
  • 89. A. Drescher, M. Ferjani. Revised model for plug/funnel flow in bins. Powder Technology, 141, 44-54, 2004.
  • 90. W. Szczepiński. On the movement of granular materials in bins and hoppers, Part I – Two-dimensional problems. Engineering Transactions, 51, 4, 419-431, 2003.
  • 91. W. Szczepiński W. On the movement of granular materials in bins, Part II – Threedimensional problems. Engineering Transactions, 51, 4, 433-444, 2003.
  • 92. Z. Kotulski, W. Szczepiński. Rachunek błędów dla inżynierów, PWN, (Error Analysis with Applications in Engineering), 2004.
  • 93. G. J. Weir. A mathematical model for dilating, non-cohessive granular flow in steep-walled hoppers. Chemical Engineering Science, 59, 149-161, 2004.
  • 94. J. Tejchman, M. Klisiński. 2001 FE-studies on rapid flow of bulk solids in silos. Granular Matter, 3, 4, 215-231, 2001.
  • 95. A. W. Jenike. Storage and Flow of Solids,. University of Utah Engineering Experiment Station, Bulletin 123, USA, 1964 .
  • 96. S. B. M. Moreea, R. M. Nedderman. Exact Stress and Velocity Distributions in a Cohesionless Material Discharging from a Conical Hopper. Chemical Engineering Science, 51, 16, 3931-3942, 1996.
  • 97. J. Kozicki, J. Tejchman. Simulations of flow patterns in silos with a cellular automaton – part 1. Task Quarterly, 9, 1, 81-103, 2005.
  • 98. G. R. Watson. Flow patterns in flat bottomed silos. PhD thesis, University of Edinburgh, 1993.
  • 99. M. G. Perry, E. Rothwell, W. T. Woodfin. Model studies of mass flow bunkers: II velocity distributions in the discharge of solids from mass flow bunkers. Powder Technology, 14, 81-92, 1976.
  • 100. C. Ruckenbrod, J. Eibl. Numerical Results to Discharge Process in Silos. Proceedings International Symposium – Reliable Flow of Particulate Solids II, Oslo, Norway, 23-25 August, 1993.
  • 101. J. M. Rotter. Critical Design Features of Steel Industrial Storage Structures, in Development in Structural Engineering (ed. B.H.V. Topping), Spon, London, 909-928, 1990.
  • 102. J. M. Rotter. Guide for the Economic Design of Circular Metal Silos. Spon, London, 2000.
  • 103. H. A. Janssen. Versuche über Getreidedruck in Silozellen. Zeitschrift des Vereines Deutscher Ingenieure, 39 (35), 1045-1049, 1895.
  • 104. M. Könen. Berechnung des Seiten und Bodendrucks in Silos, Zentralblatt, Bauverwaltung, 16, 446-449, 1985.
  • 105. K. Pieper, F. Wenzel. Comments on DIN1055: Design Loads for Buildings Loads in Silos Bins. Beton und Stahlbetonbau, 6-11, 1963.
  • 106. D. M. Walker. An Approximate Theory for Pressure and Arching in Hoppers. Chemical Engineering Science, 21, 975-997, 1966.
  • 107. A. G. Homes. Lateral Pressures in Granular Material in Silos. ASME Paper, 72-MH-30 for Meeting, Sept, 17-20, 1972.
  • 108. J. K. Walters. A Theoretical Analysis of Stresses in Silos with Vertical Walls. Chemical Engineering Science, 28, 13-21, 1973.
  • 109. A. W. Jenike, J. R. Johnson, J. W. Carson. Bin Loads – Part 3. Mass Flow Bins. Transaction ASME, 95 (Ser. B, No 1), 6-12, 1973.
  • 110. M. Reimbert, A. Reimbert. Silos: Theory and Practice, Trans. Technical Publications, 1976.
  • 111. M. Reimbert, A. Reimbert. Discussion of Design Friction Loads for Concrete Silos. ACI Structural Journal, 84 (2), 178-179, 1987.
  • 112. G. Abdel-Sayed, F. Monasa, W. Siddall. Cold-Formed Steel Farm Structures, Part 1: Grain Bins. Journal of Structural Engineering, ASCE, 111(ST10), Oct., 2065-2089, 1985.
  • 113. P. C. Arnold, A. G. McLean, A. W. Roberts. Bulk Solids: Storage, Flow and Handling, Tunra Ltd. Bulk Solids Handling Research Associates, University of Newcastle, Australia, 1980.
  • 114. E. H. Gaylord, C. N. Gaylord. Design of Steel Bins for Storage of Bulk Solids. Prentice Hall, 1984.
  • 115. A. G. Bishara. Interaction of Bin and Stored Bulk Solids, Design of Steel Bins for the Storage of Bulk Solids, (ed. J. M. Rotter), The University of Sydney, 27-33, 1985.
  • 116. A. G. Bishara, S. S. El-Azazy, T. D. Huang. Practical Analysis of Cylindrical Farm Silos Based on Finite Element Analysis. ACI Journal, November – December, 456-462, 1981.
  • 117. J. Y. Ooi, J. M. Rotter. Wall Pressures in Squat Steel Silos from Finite Element Analysis. Computers and Structures, 37(4), 361-374, 1990.
  • 118. R. A. Lohnes, J. M. Rotter, J. Y. Ooi. Application of the Finite Element Method for Calculating Stresses in Silos. NATO Scientific Collaboration Project, Final Report, 1994.
  • 119. N. Nanninga. Does the usual method of calculation for establishing pressures on walls sand bottom of silos give safe results. De Ingenieur, 44, 190-194, 1956.
  • 120. D. M. Walker. A Theory of Gravity Flow of Cohesive Powders, Central Electricity Generating Board, UK SW Region, R&D Dept Report, no. 22, 1964.
  • 121. J. Y. Ooi, J. M. Rotter, L. Pham. Systematic and Random Features of Measured Pressures on Full-Scale Silo Walls. Engineering Structures, 12(2), 74-87, 1990.
  • 122. P. C. Arnold, A. G. McLean. 1976 An analytical solution for the stress function at the wall of a converging channel. Powder Technology, 13, 255-260, 1976.
  • 123. A. G. McLean, P. C. Arnold. Improved analytical flow factors for mass-flow hoppers. Powder Technology, 15, 279-281, 1976.
  • 124. A. Khelil, J. C. Roth. Gravitational flow behaviour of granular materials. European Journal of Mechanics B/Fluids, 13, 1, 57-72, 1994.
  • 125. H. Sakaguchi, E. Ozaki. Analysis of the formation of arches pluging the flow of granular materials. In Powders and Grains, 93, Balkema, Rotterdam, 1993.
  • 126. H. Sakaguchi, E. Ozaki, T. Igarashi. Plugging of the Flow of Granular Materials during the Discharge from a Silo. International Journal of Modern Physics B (IJMPB), 7, 9/10, 1949-1963, 1993.
  • 127. R. C. Brown, J. C. Richards. Principles of Powder Mechanics. New York: Pergamon, 1970.
  • 128. R. M. Nedderman. Statics and kinematics of granular materials. Cambridge University Press, New York, 1992.
  • 129. D. C. Hong, J. A. McLennan. Molecular dynamics simulations of hard sphere granular particles. Physica A 187, 1-2, 159-171, 1992.
  • 130. D. Hirshfeld, Y. Radzyner, D. C. Rapaport. Molecular dynamics studies of granular flow through an aperture. Physics Review E 56, 4404-4415, Issue 4, 1997.
  • 131. K. D. Kafui, C. Thornton. Some observations on granular flow in hoppers and silo. Powders & Grains '97 (Behringer & Jenkins, eds.) Balkema, 511-514, 1997.
  • 132. F. Wang, C. Gardner, D. G. Schaeffer. Steady-state computation of granular or in an axisymmetric hopper. SIAM Journal of Applied Mathematics, 52, 1076, 1992.
  • 133. U. Haüssler, UJ. Eibl. Numerical investigations on discharging silos. Journal of Engineering Mechanics Division, ASCE 110 (EM6), 957-971, 1984.
  • 134. M. L. Srinivasa,P. R. Nott, R. K. Kesava. Fully developed flow of coarse granular materials through a vertical channel. Chemical Engineering Science, 52, 6, 913-933, 1997.
  • 135. W. Volk. Applied Statistics for Engineers, second edition, by Mc Graw-Hill, 1969.
  • 136. L. Likiesh, J. Liaga. Osnownyje tablicy matiematiczeskoj statistiki, Моskwa, 1985.
  • 137. H. Caram, D. C. Hong. Random-walk approach to granular flows. Physical Review Letters, 67, 7, 828-831, 1991.
  • 138. U. Tüzün, R. M. Nedderman. Experimental evidence supporting kinematic modelling of the flow of granular media in the absence of air drug. Powder Technology, 24, 257-266, 1979b.
  • 139. W. W. Mullins. Experimental Evidence for the Stochastic Theory of Particle Flow Under Gravity. Powder Technology, 9, 29-37, 1974.
  • 140. J. Choi, A. Kudrolli, R.R. Rosales, M. Z. Bazant. Diffusion and Mixing in Gravity-Driven Dense Granular Flows. Physical Review Letters, 92, 17, 174-301, 2004.
  • 141. J. Choi, A. Kudrolli, M. Z. Bazant. Velocity profile of granular flow inside silos and hoppers Journal of Physics: Condensed Matter, 17, S2533-S2548, 2005.
  • 142. A. Samadani, A. Pradhan, A. Kudrolli. Size segregation of granular matter in silo discharge. Phys. Rev. E 60, 7203-7209, 1999.
  • 143. I. Sielamowicz, M. Czech, T. A. Kowalewski. Empirical description of granular flow inside a model silo with vertical walls. Biosystems Engineering, 108, 334-344, 2011.
  • 144. C. S. Chou, J. Y. Hsu, Y. D. Lau. Flow patterns and stresses on the wall in a two-dimensional flat-bottomed bin. Journal of Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A, 26, 4, 397-408, 2003.
  • 145. W. G. Pariseau. Discontinuous velocity fields in gravity flows of granular materials through slots. Powder Technology, 3, 218-226, 1969.
  • 146. J. Lee, S. C. Cowin, J. S. Templeton. An experimental study of the kinematics of flow through hoppers. Trans. Society Rheology, 18, 247-269, 1974.
  • 147. P. A. Langston, U. Tüzün, D. M. Heyes. Distinct element simulation of interstitial air effects in axially symmetric granular flow in hoppers. Chemical Engineering Science, 51, 873-891, 1996.
  • 148. P. A. Langston, M. S. Nikitidis, U. Tüzün, D. M. Heyes, N. M. Spyrou. Microstructural simulation and imaging of granular flow in two- and three dimensional hoppers. Powder Technology, 94, 59-72, 1997.
  • 149. E. B. Pitman. Stress and Velocity Fields in Two- and Three Dimensional Hoppers. Powder Technology, 47, 219-231, 1986.
  • 150. R. Dosekun. The flow of granular materials, Ph.D. thesis, University of Cambridge, 1980.
  • 151. R. M. Nedderman. The measurement of the velocity profile in a granular material discharging from a conical hopper. Chemical Engineering Science, 43, 1507-1516, 1988.
  • 152. J. R. Johanson, A. W. Jenike. Stress and velocity fields in gravity flow of bulk solids. University of Utah Engineering Experiment Station, Bulletin 116, USA, 1962.
  • 153. R. M. Horne, R. M. Nedderman. Analysis of switch stresses in two-dimensional bunkers. Powder Technology, 19, 2, 235-241, 1978.
  • 154. R. M. Horne, R. M. Nedderman. Stress distributions in hoppers. Powder Technology, 19, 243-254, 1978.
  • 155. J. A. S. Cleaver, R. M. Nedderman. Theoretical predictions of stress and velocity profiles in conical hoppers. Chemical Engineering Science, 48, 21, 3696-3702, 1993.
  • 156. H. G. Polderman, J. Boom, E. de Hilster, A. M. Scott. Solids flow velocity profiles in mass flow hoppers. Chemical Engineering Science, 42, 4, 737-744, 1987.
  • 157. H. G. Polderman, A. M. Scott, J. Boom. Solids stresses in bunkers with inserts. Int. Chem. Engng. Symp. Ser., No. 91.227-240, 1985.
  • 158. Z. Mróz, Cz. Szymański. Gravity flow of a granular material in a converging channel. Arch. Mech., 23, 897-917, 1971.
  • 159. J. Tejchman. Behaviour of granular medium in a silo – a numerical Cosserat approach. Part 3. Archives of Civil Engineering, 1, 7-28, 1993.
  • 160. J. Tejchman. Behaviour of a Granular Medium in a Silo - Model Tests in a Plane Silo with Convergent Walls. Part II. Archives of Civil Engineering, XXXVII, 4, 1993.
  • 161. J. Tejchman. Dynamical Phenomena in Silos During Discharge. Archives of Civil Engineering, XL 1, 1994.
  • 162. R. L. Michałowski. Flow of granular material through a plane hopper. Powder Technology, 39, 29-40, 1984.
  • 163. R. L. Michałowski. Flow of granular media through a plane parallel/converg-ing bunker, Chemical Engineering Science, 42, 11, 2587-2596, 1987.
  • 164. P. L. Bransby, P. M. Blair-Fish. Initial deformations during mass flow from a bunker: observations and idealizations. Powder Technology, 11, 273-288, 1975.
  • 165. I. Sielamowicz, M. Czech. Analysis of the radial flow assumption in a converging model silo. Biosystems Engineering, 106, 412-422, 2010.
  • 166. EN 1991-4 Eurocode 1: Actions on structures: Part 4: Actions in silos and tanks. 2004.
  • 167. PN-89/B-03262, Polish Standard: Silosy żelbetowe na materiały sypkie. Obliczenia statyczne, (in Polish), 1989.
  • 168. ACI 313, Alternate Design Procedure, Discussion Document before ACI Committee 313 on Concrete Bins, Silos and Bunkers for Storing Granular Materials, ACI, Detroit, 1989.
  • 169. AS 3774, Loads on Bulk Solids Containers, Australian Standards Association of Australia, Sydney, 1996.
  • 170. J. M. Rotter. Guide for the Economic Design of Metal Silos, E&FN Spon, London, 1989.
  • 171. A. W. Jenike. Denting of Circular Bins with Eccentric Draw Points, Journal of the Structural Division ASCE 93 (ST1) 27-35, 1967.
  • 172. J. G. M. Wood. The Analysis of Silo Structures Subject to Eccentric Discharge, Proc., 2nd Int. Conf. on Design of Silos for Strength and Flow, Stratford-upon-Avon, 132- 144, 1983.
  • 173. J. M. Rotter. The analysis of steel bins subject to eccentric discharge. Proc., 2nd Inter. Conference on Bulk Materials Storage Handling and Transportation, Ins. of Eng., Wollongong, Australia, July, 264-271, 1986.
  • 174. ENV 1991 - Part 4. Eurocode 1, Actions on silos and tanks, Brussels, Belgium, 2003.
  • 175. F. Ayuga, M. Guaita, P. J. Aguado, A. Couto. Discharge and the eccentricity of the hopper influence on the silo wall pressures. Journal of Engineering Mechanics, 127, 10, 1067-1074, 2001.
  • 176. Anon. Reliable Flow of Particulate Solids, EFCE Publication Series (European Federation of Chemical Engineers), 49, 1985.
  • 177. S. A. Thompson, J. L. Usry, J. A. Legg. Loads in a Model Grain Bin as Affected by Various Unloading Techniques. Transactions of the ASAE, 29, 2, 1986.
  • 178. D. K. Pokrant, M. G. Britton. Investigation into the Effects of Eccentric Drawoff and Flowrate in Model Grain Bin Studies. Paper-American Society of Agricultural Engineers, 86-4076, 1986.
  • 179. M. Kamiński. Der Betrieb von Silos mit exzentrischen Auslauf. Bautechnik. Jg. 56, H. 6, 203-204, 1979.
  • 180. M. Kamiński. Untersuchung des Zuckerdruckes in Silos: Tl 2. Exzentrische Entleerung. Zuckerindustrie, Jg. 111, 10, 916-921, 1986.
  • 181. E. Hampe, M. Kamiński. Der Einfluss exzentrischer Entleerung auf die Druckverhealtnisse in Silos. Bautechnik, Jg. 61, 1 H, 73-82, 2 H, 136-142, 1984.
  • 182. A. Łapko, W. Stachurski. Experimental investigations on interaction between the reinforced concrete silo walls and the granular medium, (in Polish: Eksperymentalne badania niektórych efektów współpracy żelbetowych po-włok silosów z ośrodkiem sypkim w komorach elewatorów zbożowych). Archiwum Inżynierii Lądowej, XXXII, 4, PWN, 427-443, 1987.
  • 183. H. M. Haydl. Eccentric Discharge in Circular Silos. Proceedings of the Insti-tution of Civil Engineers, 83, 2, 1987.
  • 184. S. S. Safarian, E. C. Harris. Post-tensioned Circular Silos for Modern Industry. Bulk Solids Handling, 7, 2, 1987.
  • 185. J. M. Rotter, P. T. Jumikis, S. P. Fleming, S. J. Porter. Experiments on the buckling of thin-walled model silo structures, Research Report-University of Sydney, R570, 1988.
  • 186. H. de Clercq. Investigation into Stability of a Silo with Concentric and Eccentric Discharge. Civil Engineers in South Africa, 32, 3, 103-7, 1990.
  • 187. G. E. Blight. Eccentric Discharge of a Large Coal Bin with Six Outlets. Bulk Solids Handling, 11, 2, 451-457, 1991.
  • 188. A. Borcz A., Abd el Rahim Hamdy. Wall Pressure Measurements in Eccentrically Discharged Cement Silos. Bulk Solids Handling, 11, 2, 469-476, 1991.
  • 189. F. Shalouf, S. Kobielak. Reduction of the dynamic flow pressure in grain silo by using discharge tubes. Powder Handling Processing, 13, 1, 2001.
  • 190. M. Molenda, J. Horabik, S. A. Thompson, I. J. Ross. Bin Loads Induced by Eccentric Filling and Discharge of Grain. Transactions of the ASAE, 45, 3, 781-785, 2002.
  • 191. C. S. Chou, Y. C. Chuang, J. Smid, S. S. Hsiau, J. T. Kuo. Flow patterns and stresses on the wall in a moving granular bed with eccentric discharge. Advanced Powder Technology, 13, 1, 1-13, 2002.
  • 192. C. S. Chou, J. Y. Hsu, Y. D. Lau. The granular flow in two-dimensional flat-bottomed hopper with eccentric discharge. Physica A Statystical Mechanics and its Applications, 308, 1-4, 46-58, 2002.
  • 193. M. Wójcik, G. G. Enstad, M. Jecmenica. Numerical Calculations of Wall Pressures and Stresses in Steel Cylindrical Silos with Concentric and Eccentric Hoppers. Journal of Particulate Science and Technology, 21(3), 247-258, 2003.
  • 194. C. S. Chou, J. Y. Hsu. Kinematic model for granular flow in a two-dimensional flat-bottomed hopper. Advanced Powder Technology, 14, 3, 313-331, 2003.
  • 195. J. S. Guaita, A. Couto, F. Ayuga. Numerical Simulation of Wall Pressure during Discharge of Granular Material from Cylindrical Silos with Eccentric Hoppers. Biosystem Engineering, 85, 1, 101-109, 2003.
  • 196. C. Y. Song, J. G. Teng. Buckling of Circular steel silos subject to code-specified eccentric discharge pressures. Engineering Structures, 25, 1397-1417, 2003.
  • 197. K. Nübel, W. Huang. A study of localized deformation pattern in granular media. Computer Methods in Applied Mechanics and Engineering, 193, 2719-2743, 2004.
  • 198. J. Tejchman. Modelling of shear localisation and autogenous dynamic effects in granular bodies. Habilitation Monograph, 140, 1-353, Veroffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, 1997.
  • 199. J. Tejchman. Shear Zones and Dynamic Effects During Silo Emptying – Part 1. Archives of Civil Engineering, XLII, 4, 1997.
  • 200. J. Tejchman. Shear Zones and Dynamic Effect During Silo Emptying – Part 2. Archives of Civil Engineering, XLII, 4, 1997.
  • 201. I. Sielamowicz, M. Czech, T. A. Kowalewski. Empirical description of flow parameters in eccentric flow inside a model silo. Powder Technology, 198, 381-394, 2010.
  • 202. I. Sielamowicz, M. Czech, T. A. Kowalewski. Empirical analysis of eccentric flow registered by the DPIV technique inside a silo model. Powder Technology, 212, 38-56, 2011.
  • 203. J. Tejchman, G. Gudehus. Verspannung, Scherfugenbildung und Selbster-regung bei der Siloentleerung, in: J. Eibl, G. Gudehus (Eds.), Silobauwerke und ihre spezifischen Beanspruchungen, Deutsche Forschungsgemeinschaft, Wiley-VCH, 245-284, 2000.
  • 204. J. Tejchman. Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Publication Series of the Institute of Soil and Rock Mechanics, University of Karlsruhe, 117, 1-236, 1989.
  • 205. M. Niedostatkiewicz, J. Tejchman. Measurements of changes of the bulk solid density during granular flow in silos. Powder Handling and Processing, 17, 2, 76-83, 2005.
  • 206. J. Tejchman, G. Gudehus. Shearing of a narrow granular layer with polar quantities. International Journal for Numerical and Analytical Methods in Geomechanics, 25, 1, 1–28, 2001.
  • 207. I. Vardoulakis. Scherfugenbildung in Sandkörpern als Verzweigungsproblem, PhD thesis, Institute for Soil and Rock Mechanics, University of Karlsruhe, 70, 1997.
  • 208. J. Desrues. La localization de la deformation dans les materiaux granulaires. PhD thesis, USMG and INPG, Grenoble, 1984.
  • 209. F. Löffelmann. Theoretische und experimentelle Untersuchungen zur Schütt-gut-Wand-Wechselwirkung und zum Mischen und Entmischen von Granulaten, PhD thesis, University of Karlsruhe, 1989.
  • 210. T. Yoshida, F. Tatsuoka, M. Siddique. Shear banding in sands observed in plane strain compression, [in:] R. Chambon, J. Desrues, I. Vardoulakis (Eds.), Localisation and Bifurcation Theory for Soils and Rocks, Balkema, Rotterdam, 165-181, 1994.
  • 211. Z. Więckowski, M. Klisiński. Finite deformation analysis of motion of granular materials in a silo. Archives of Mechanics, 47, 617-633, 1995.
  • 212. P. G. De Gennes. 1998 Reflections on the mechanics of granular matter. Physic A 261, 267-293, 1998.
  • 213. P. G. De Gennes. Granular matter: a tentative view. Rev. Mod. Phys., 71(2), S374- S382, 1999.
  • 214. Z. Mróz, K. Kwaszczyńska. Certain boundary problems for granular materials with density hardening. Engineering Transactions, 19(1), 15-42, 1971.
  • 215. J. Schwedes, H. Feise. Modelling of pressures and flow in silos. Chemical Engineering Technology, 18, 96-109, 1995.
  • 216. A. Drescher. Some aspects of flow of granular material in hoppers. Phil. Trans. R. Soc. London A 356, 2649-2666, 1998.
  • 217. Z. Mróz, I. Sielamowicz. Deformation zones in granular materials in converging hoppers during filling and discharge processes. Engineering Transactions, 51(4), 461-491, 2003.
  • 218. R. M. Horne, R. M.Nedderman. Analysis of the Stress Distribution in Two-Dimensional Bins by the Method of Characteristics. Powder Technology, 14, 93-102, 1976.
  • 219. Y.-H. Wu, R. Collinson. Determination of velocity and stress discontinuities in quasistatic granular flows. Anziam Journal, 42(E), C1558-C1579, 2000.
  • 220. J. Tejchman, G. Gudehus. Silo-music and silo-quake experiments and a numerical Cosserat approach. Powder Technology, 76(2), 201-212, 1993.
  • 221. J. Eibl, G. Rombach. Numerical investigations on discharging silos. Proc. 6th International Conference on Numerical Methods in Geomechanics, V1, Balkema, Rotterdam, 317–320, 1988.
  • 222. S. A. Elaskar, L. A. Godoy, D. D. Gray, J. M. Stiles. A viscoplastic approach to model the flow of granular solids. International Journal of Solids and Structures, 37, 2185-2214, 2000.
  • 223. J. Tejchman, T. Ummenhofer. Bedding effects in bulk solids in silos: experiments and a polar hypoplastic approach. Thin-Walled Structures 37, 333-361, 2000.
  • 224. B. Sukumaran, A. K. Ashmaway. Influence of inherent particle characteristics on hopper flow rate. Powder Technology, 138, 46-50, 2003.
  • 225. P. A. Cundall. A computer model for rock-mass behaviour using interactive graphics for the input and output of geometric data. Rep. AD/A-001 602, U.S. National Technical Information Service, 1974.
  • 226. P. A. Cundall, O. D. L. Strack. A discrete numerical model for granular assemblies. Geotechnique, 29, 47-65, 1979.
  • 227. C. S. Campbell, C. E. Brennen. Computer simulation of shear flows of granular material. Mechanics of granular materials: New models and constitutive relations. Elsevier, Amsterdam, 1983.
  • 228. O. R. Walton. Particle – dynamic calculations of shear flow. Mechanics of granular materials, New models and constitutive relations. J. T. Jenkins and M. Satake, eds. Elsevier, Amsterdam, 327-338, 1983.
  • 229. C. Thornton. Application of DEM to process engineering problems in DEM. In: 1st US Conference, Colorado School of Mines Press, 87-100, 1989.
  • 230. P. A. Langston, U. Tüzün, D. M. Heyes. Continuous potential discrete particle simulations of stress and velocity fields in hoppers, Transition from fluid to granular flow. Chemical Engineering Science, 49(8), 1259-1275, 1994.
  • 231. P. A. Langston, U. Tüzün, D. M. Heyes. Discrete element simulation of granular flow in 2D and 3D hoppers: dependence of discharge rate and wall stress on particle interactions. Chemical Engineering Science, 50(6), 967-987, 1995.
  • 232. P. A. Langston, U. Tüzün, D. M. Heyes. Discrete element simulation of internal stress and flow fields in funnel flow hoppers. Powder Technology, 85, 153-169, 1995.
  • 233. J. S. Leszczyński. A discrete model of the dynamics of particle collisions in granular flows. Monograph 106, Częstochowa University of Technolog, 2003.
  • 234. J. S. Leszczyński. A discrete model of a two-particle contact applied to cohesive granular materials. Granular Matter, 5, 2, 91-98, 2005.
  • 235. J. S. Leszczyński, T. Błaszczyk. Modeling the transition between stable and unstable operation while emptying a silo. Granular Matter, 13, 4, 429–438, 2011.
  • 236. S. Masson, J. Martinez. Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technology, 109, 164-178, 2000.
  • 237. J. Sykut, M. Molenda, J. Horabik. DEM simulation of the packing structure and wall load in a 2-dimensional silo. Granular Matter, 10, 273-278, 2008.
  • 238. R. Balevičius, R. Kačianauskas, M. Mróz, I. Sielamowicz. Discrete particle investigation of friction effect in filling and unsteady/steady discharge in three dimensional wedge-shaped hopper. Powder Technology, 187, 159-174, 2008.
  • 239. J. F. Ferellec, J. Martinez, S. Masson, K. Iwashita. Influence of particle rolling resistance on silo flow in DEM simulations. In: Kishino (ed), Powders and Grains, Swets & Zetlinger, Lisse, 409-412, 2001.
  • 240. K. Iwashita, M. Oda. Micro-deformation mechanism of shear banding process based on modified distinct element. Powder Technology, 109, 192-205, 2000.
  • 241. D. Hirshfeld, D. C. Rapaport. Granular flow from a silo: discrete-particle simulations in three dimensions. Eur. Phys. J. E 4, 193-199, 2001.
  • 242. P. W. Clearly, M. L. Sawley. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Applied Mathematical Modelling, 26, 89-111, 2002.
  • 243. S. Takeuchi, X. Wang, M. J. Rhodes. Discrete element study of particle circulation in a 3-D spouted bed. Chemical Engineering Science 60, 1267-1276, 2005.
  • 244. A. Džiugys, B. J. Peters. An Approach to Simulate the Motion of Spherical and Non- Spherical Fuel Particles in Combustion Chambers. Granular Material, 3(4), 231-266, 2001.
  • 245. P. A. Langston, M. A. Al-Awamleh, F. Y. Fraige, B. N. Asmar. Distinct element modelling of non-spherical frictionless particle flow. Chemical Engineering Science, 59, 425-435, 2004.
  • 246. J. Li, P. A. Langston, C. Webb, T. Dyakowski. Flow of sphero-disc particles in rectangular hoppers – a DEM and experimental comparison in 3D. Chemical Engineering Science, 59, 5917-5929, 2004.
  • 247. A. A. Mirghasemi, L. Rothenburg, E. L. Matyas. Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles, Geotechnique, 52(3), 209-217, 2000.
  • 248. C. Nouguier-Lehon, E. Vincens, B. Cambou. Structural changes in granular materials: The case of irregular polygonal particles. International Journal of Solids and Structures, 42(24-25), 63, 56-6375, 2005.
  • 249. D. Markauskas, R. Kačianauskas. Investigation of the rolling resistance in DEM simulations of piling. Journal of Vibroengineering, 11, 3, 482-490, 2009.
  • 250. D. Markauskas, R. Kačianauskas. Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granular Matter, 13, 143-148, 2011.
  • 251. D. Markauskas, R. Kačianauskas, A. Džiugys, R. Navakas. Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granular Matter, 12, 1, 107-123, 2010.
  • 252. H. P. Zhu, A. B. Yu. Steady-state granular flow in a three-dimensional cylindrical hopper with flat bottom: microscopic analysis. Journal of Physics D, Applied Physics, 37, 1497-1508, 2004.
  • 253. H. P. Zhu, A. B. Yu. Steady-state granular flow in 3D cylindrical hopper with flat bottom: macroscopic analysis. Granular Matter, 7, 97-107, 2005.
  • 254. H. P. Zhu, A. B. Yu. Micromechanic modelling and analysis of unsteady-state granular flow in cylindrical hopper. Journal of Eng. Math., 52, 307-320, 2005.
  • 255. R. Balevičius, R. Kačianauskas, A. Džiugys, A. Maknickas, K. Vislavičius. DEMMAT code for numerical simulation of multi-particle dynamics. Information Technology and Control, 34(1), 71-78, 2005.
  • 256. A. Maknickas, A. Kačeniauskas, R. Kačenauskas, R. Balevičius, A. Džiugys. Parallel DEM software for simulation of granular material. Informatica, 17, 2, 207-224, 2006.
  • 257. R. Kačianauskas, R. Maknickas, A. Kačeniauskas, D. Markauskas, R. Balevičius. Parallel discrete element simulation of poly-dispersed granular material. Advances in engineering software, 41, 1, 52-63, 2010.
  • 258. P. W. Clearly. Industrial particle flow modelling using discrete element method. Engineering Computations, 26, 6, 698-743, 2009.
  • 259. A. Datta, B. K. Mishra, S. P. Das, A. Sahu. A DEM analysis of flow characteristics of noncohesive particles in hopper. Materials and Manufactu-ring Processes, 23, 2, 195-202, 2008.
  • 260. S. C. Negi, Z. Lu, J. C. Jofriet. A Numerical Model for flow o granular material in Silos. Part 2: Model Validation. Journal of Agricultural Engineering Research, 68, 231-236, 1997.
  • 261. R. Balevičius, R. Kačianauskas, Z. Mróz, I. Sielamowicz. Investigation of wall stress and outflow rate in a flat-bottomed bin: A comparison of the DEM model results with the experimental measurements. Powder Technology, 214, 322-336, 2011.
  • 262. C. González-Montellano, A. Ramírez, A. Gallego, F. Ayuga. Validation and experimen-tal calibration of 3D discrete element models for the simulation of the discharge flow in silos. Chemical Engineering Science, doi: 10.1016/j.ces.2011.07. 009, 2011.
  • 263. R. Balevičius, A. Džiugys, R. Kačianauskas. Discrete element method and its application to the analysis of penetration into granular media. Journal of Civil Engineering and Management, 10(1): 3-14, 2004.
  • 264. G. A. Kőhring. Computer simulations of granular materials: the effects of mesoscopic forces. Journal de Physique I France, 4, 12, 1779-1782, 1994.
  • 265. G. A. Kőhring. Dynamical simulations of granular flows on multi-processor computers. Computational methods in applied sciences ‘96, John Wiley & Sons Ltd., 190-196, 1996.
  • 266. R. D. Mindlin, H. Deresiewicz. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics Transactions of ASME, 20, 327-344, 1953.
  • 267. A. E. Skinner. A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles. Geotechnique, 19, 150-157, 1969.
  • 268. O. R. Walton. Effects of interparticle friction and particle shape on dynamic angles of repose via particle-dynamics simulation. In: Mechanics and Statistical Physics of Particulate Materials, June 8-10, La Jolla, California, 1994.
  • 269. A. Mohamed, M. Gutierrez. Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials. Granular Matter, 12, 527-541, 2010.
  • 270. K. L. Johnson. Contact mechanics. New York: Cambridge University Press, 1985.
  • 271. D. Tabor. The mechanism of rolling friction. I. The plastic range. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229, 1177, 181-198, 1955.
  • 272. D. Tabor. The mechanism of rolling friction. II. The elastic range. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229,1177, 198-220, 1955.
  • 273. J. P. Bardet, Q. Huang. Rotational stiffness of cylindrical particle contacts. In: Powders and Grains '93, Proc. 2nd International Conference on Micromechanics of Granular Media, Birmingham, 39-43, 1993.
  • 274. J. Rojek, F. Zarate, C. Agelet de Saracibar, C. Gilbourne, P. Verdot. Discrete element modelling and simulation of sand mould manufacture for the lost foam process. International Journal for Numerical Methods in Engineering, 62, 1421-1441, 2005.
  • 275. C. Zhou, J. Y. Ooi. Numerical investigation of progressive development of granular pile with spherical and non-spherical particles. Journal of Mechanics of Materials, 41, 6, 707-714, 2009.
  • 276. J. Ai, J. F. Chen, J. M. Rotter, J. Y. Ooi. Assessment of Rolling Resistance Models in Discrete Element Simulations. Powder Technology, 206, 269-282, 2011.
  • 277. A. P. Grima, P. W. Wypych. Investigation into calibration of discrete element model parameters for scale-up and validation of particle–structure interactions under impact conditions, Powder Technology, 212, 1, 198-209, 2011.
  • 278. A. P. Grima, P. W. Wypych. Discrete element simulations of granular pile formation. Method for calibrating discrete element models. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 28, 3, 314-339, 2011.
  • 279. Y. C. Zhou, B. D. Wright, R. Y. Yang, B. H. Xu, A. B. Yu. Rolling friction in the dynamic simulation of sand pile formation. Physica A, 269, 536-553, 1999.
  • 280. H. P. Zhu, A. B. Yu. A theoretical analysis of the force models in discrete element method. Powder Technology, 161, 122-129, 2006.
  • 281. C. M. Wensrich, A. Katterfeld. Rolling friction as a technique for modelling particle shape in DEM. Powder Technology, 217, 409-417, 2012.
  • 282. M. P. Allen, D. J. Tildesley. Computer simulation of liquids. Clarendon Press, Oxford, 1991.
  • 283. R. Balevičius, R. Kačianauskas. DEM analysis of granular flow in pyramidal hoppers. In: II European conference on computational mechanics. Solids, structures and coupled problems in engineering. Lisbon, Portugal 5-8 June: proceedings, 2006.
  • 284. P. A. Thompson, G. S. Grest. Granular flow: friction and the dilatancy transition. Physical Review Letters, 67, 1751-1754, 1991.
  • 285. B. N. Asmar, P. A. Langston, A. J. Matchett, J. K. Walters. Validation tests on a distinct element model of vibrating cohesive particle systems. Computers and Chemical Engineering, (26), 785-802, 2002.
  • 286. R. Balevičius, R. Kačianauskas, A. Džiugys, A. Maknickas, K. Vislavičius. Investigation of performance of programming approaches and languages used for numerical simulation of granular material by the discrete element method. Computer Physics Communications, 175(6), 404-415, 2006.
  • 287. R. Balevičius, R. Kačianauskas, Z. Mróz, I. Sielamowicz. Discrete Element Method applied to multiobjective optimization of discharge flow parameters in hoppers. Structural and Multidisciplinary Optimization, 31(3):163-175, 2006b.
  • 288. R. Balevičius, R. Kačianauskas, Z. Mróz, I. Sielamowicz. Microscopic and macroscopic analysis of granular material behaviour in 3D flat-bottomed hopper by the discrete element method. Archives of Mechanics, 59, 3, 231-257, 2007.
  • 289. R. Balevičius, R. Kačianauskas, Z. Mróz, I. Sielamowicz. Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes. Advanced Powder Technology, 22, 226-235, 2011.
  • 290. P. Meakin, R. Jullien. Periodic disc packings generated by random deposition in narrow channels. Europhys. Letters, 15, 851, 1991.
  • 291. A. T. Procopio, A. Zavaliangos. Simulation of multi-axial compaction of granular media from loose to high relative densities. Journal of the Mechanics and Physics of Solids, 53, 1523-1551, 2005.
  • 292. J. Christoffersen, M. Mehrabadi, S. Nemat-Nasser. A micro-mechanical description of granular material behavior. Journal of Applied Mechanics, 48, 2, 339-344, 1981.
  • 293. R. M. German. Particle Packing Characteristics. Pinceton, N.J.: Metal Powder Industrial Federation, 1989.
  • 294. O. Pouliquen, R. Gutfraind. Stress Fluctuations and Shear Zones in Quasi-Static Granular Chute Flows. Phys. Review, E 53, 557-561, 1996.
  • 295. W. R. Ketterhagen, R. Bharadwaj, B. C. Hancock. The coefficient of rolling resistance (CoRR) of some pharmaceutical tablets. International Journal of Pharma-ceutics, 392, 107-110, 2010.
  • 296. A. Ramirez, J. Nielsen, F. Ayuga. On the use of plate-type normal pressure cells in silos Part 1: Calibration and evaluation. Computers and Electronics in Acriculture, 71, 71-76, 2010.
  • 297. A. Savitzky, M. J. E. Golay. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639, 1964.
  • 298. I. Yalçin, C. Özarslan, T. Akbaş. Physical properties of pea (Pisum sativum) seed. Journal of Food Engineering, 79, 731-735, 2007.
  • 299. M. Molenda, J. Horabik. Własności fizyczne sypkich surowców spożywczych. Zarys katalogu. Lublin, 2002.
  • 300. N. N. Mohsenin. Physical Properties of Plant and Animal Materials. Gordon and Breach Publ. Inc., New York, 1978.
  • 301. J. Łukaszuk, M. Molenda, J. Horabik, J. Wiącek. Method of measurement of coefficient of friction between pairs of metallic and organic objects. Acta Agrophysica, 13(2), 407-418 (in Polish), 2009.
  • 302. A. Sawicki, w. Świdziński. Cyclic compaction of soils, grains and powders. Powder Technology, 85, 97-104, 1995.
  • 303. J. Horabik, M. Molenda. Physical properties of granular food materials. Acta Agrophysica, 74, 1-89, 2002.
  • 304. GOST 12248-96 (1996) Soils. Laboratory methods for determining the strength and strain characteristics (in Russian).
  • 305. BS 1377 (1990) Part 7: Shear strength tests (total stress).
  • 306. R. W. Day. Foundation engineering handbook: design and construction with the 2006 international building code. The McGraw-Hill Companies, Inc., New York, 2006.
  • 307. J. Amšiejus, N. Dirgėlienė, A. Norkus, D. Žilionienė. Evaluation of soil shear strength parameters via triaxial testing by height versus diameter ratio of sample. The Baltic Journal of Road and Bridge Engineering, 4(2), 54-60, 2009.
  • 308 G. H. Ristow. Simulating granular flow with molecular dynamics. Journal de Physique I France, 2(5), 649-662, 1992.
  • 309. G. H. Ristow, H. J. Herrmann. Forces on the walls and stagnant zones in a hopper filled with granular material. Physica A, 213, 474-481, 1994.
  • 310. H. Kruggel-Emden, E. Simsek, S. Rickelt, S. Wirtz, V. Scherer. Review and extension of normal force models for the Discrete Element Method. Powder Technology, 171, 157-173, 2007.
  • 311. W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren, B. C. Hancock. Predicting the flow mode from hoppers using the discrete element method. Powder Technology, 195(1), 1-10, 2009.
  • 312. F. Vittorio De Blasio, M.-B. Saeter. Rolling friction on a granular medium. Physical Review E 79, 022301-1-4, 2009.
  • 313. H. P. Zhu, A. B. Yu. Averaging method of granular material. Physical Review, E, 66, 021302-1-10, 2002.
  • 314. R. Balevičius, D. Markauskas. Numerical stress analysis of granular material. Mechanika, 66(4) 12-17, 2007.
  • 315. J. Y. Ooi, J. M. Rotter. Elastic predictions of pressures in conical silo hoppers. Engineering Structures, 13(1), 2-12, 1991.
  • 316. S. K. Shukla, J. G. Loughran, N. Sivakugan. Stress within a cohesionless granular fill in a storage vessel with sloping walls during initial static loading. Powder Technology, 192(3), 389-393, 2009.
  • 317. A. Kwade, D. Schulze, J. Schwedes. Determination of the Stress Ratio in Uniaxial Compression Tests Part 1 and 2. Powder Handling & Processing 6(2) and 6(2) 61-65, 199-203, 1994.
  • 318. W. A. Beverloo, H. A. Leniger, J. Van de Welde. The flow of granular solids through orifices. Chemical Engineering Science, 15, 260-268, 1961.
  • 319. Ch. Zhao, B. E. Hobbs, A. Ord, P. Hornby, Sh. Peng, L. Liu. Particle simulation of spontaneous crack generation problems in large-scale quasi-static systems. International Journal for Numerical Methods in Engineering, 69(11), 397-421, 2007.
  • 320. C. Bierwisch, T. Kraft, H. Riedel, M. Moseler. Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. Journal of the Mechanics and Physics of Solids, 57, 10–31, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53bb9445-a50f-4e62-bf92-5d5a5b62de62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.