PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of L-asparagine as dopant on the growth and characteristics of ammonium tetroxalate dihydrate single crystal

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Single crystals of L-asparagine doped ammonium tetroxalate dihydrate were grown using slow evaporation solution growth technique with deionized water as a solvent. The shift and intensity of the peaks in the single crystal X-ray diffraction and Fourier transform infrared analyses confirmed the inclusion of L-asparagine in the ammonium tetroxalate dihydrate crystal structure. The optical transmission characteristics viz. optical band gap, optical conductivity, etc., were determined. Thermal studies revealed the occurrence of anomalies at 135.3 °C and 221.7 °C leading to the possibility of phase transitions and thereby, ferroelectric behavior. Vickers microhardness studies enabled determination of various microhardness parameters. Dielectric behavior was analyzed by varying the temperature and frequency. Anomalies were observed at 135 °C and 221 °C suggesting the existence of ferroelectric nature of the compound. Self-defocusing effect was observed. The polarization-electric field hysteresis loops showed a pinched effect due to defects induced by inclusion of dopant. The crystals were characterized by single crystal XRD, FT-IR, DRS, UV-Vis-NIR, Vickers microhardness test as well as thermal and dielectric techniques. In brief, L-asparagine as a dopant in ammonium tetroxalate dihydrate altered various physical properties of the crystals. They were highly transparent in the visible region with a wider optical band gap, softer material than the parent, higher phase transition temperature of 135 °C, negative nonlinearity and self-defocusing ability.
Wydawca
Rocznik
Strony
48--61
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
  • Department of Physics, R.M.D. Engineering College, Kavaraipettai 601206, India
  • Anna University Chennai, Guindy, Chennai 600 025, India
  • Department of Physics, Velammal Engineering College, Chennai 600066, India
Bibliografia
  • [1] LINES M.E., GLASS A.M., Principles and Applications of ferroelectric and related material, Oxford University Press, New York, 1977.
  • [2] DAUBER M., RABE K.M., SCOTT J., Rev. Mod. Phys., 77 (2005), 1083.
  • [3] TWIEG R., AZEMA A., JAIN K., CHENG Y.Y., Chem. Phys. Lett., 92 (1982), 208.
  • [4] CURRIE M., SPEAKMAN J.C., CURRY N.A., J. Chem. Soc. A, (1967), 1862.
  • [5] JERUSHA E., KUMAR R.I.S., KIRUPAVATHY S.S., GOPALAKRISHNAN R., Optik, 127 (2016), 3896.
  • [6] AMIRKHANYAN Z.G., REMEDIOS C.M., MASCARENHAS Y.P., MORELHAO S.L., J. Appl. Cryst., 47 (2014), 160.
  • [7] SOARES A.S., CASPAR D.L., WECKERT E., HEROUX A., HOELZER K., SCHROER K., ZELLNER J., SCHNEIDER D., NOLAN W., SWEET R.M., Acta Cryst. Sec. D: Bio. Cryst., 59 (2003), 1716.
  • [8] COLTHUP N.B., J. Opt. Soc. Am., 40 (1950), 397.
  • [9] KUBELKA P., J. Opt. Soc. Am., 44 (1954), 330.
  • [10] BURGETH G., KISCH H., Coord. Chem. Rev., 230 (2002), 41.
  • [11] MERSCH M., BUSE K., SAUF W., HESSE H., KRATZIG E., Phys. Status Solidi, 140 (1993), 273.
  • [12] BARDEEN J., BLATT F.J., HALL L.H., Proceedings of the Photoconductivity conference, Atlantic City, Wiley, New York, (1956), 146.
  • [13] SCHMCISSER D., RAGER A., THONKE K., PILKUHN M., FROHLICH D., GAAUGLITZ G., SCHAFER M., OELKRUG D., Synth. Met., 41 (1991), 1457.
  • [14] FANG Z., LIN J., LIU R., LIU P., LI Y., HUANG X., DING K., NING L., ZHANG Y., Cryst. Eng. Commun., 16 (2014), 10569.
  • [15] SENTHIL K., KALAINATHAN S., KUMAR A.R., ARAVINDAN P.G., RSC Adv., 4 (2014), 56112.
  • [16] DALAL J., SINHA N., KUMAR B., Opt. Mater., 37 (2014), 457.
  • [17] ANIS M., SHIRSAT M.D., HUSSAINI S.S., JOSHI B., MULEY G.G., J. Mat. Sci. Tech., 32 (2016), 62.
  • [18] GIRISUN T.C.S., DHANUSKODI S., Cryst. Res. Technol., 44 (2009), 1297.
  • [19] ARUMANAYAGAM T., MURUGAKOOTHAN P., J. Min. Mater. Char. Eng., 13 (2011), 1225.
  • [20] UGWU E.I., OLAYINKA A.S., OLABODE F.I., J. Eng. Appl. Sci., 4 (2009), 126.
  • [21] GUPTA V., MANSINGH A., J. Appl. Phys., 80 (1996), 1063.
  • [22] LI H., HAN Y.H., BRADT R.C., J. Mater. Sci., 29 (1994), 5641-5645.
  • [23] KUNJOMANA A.G., CHANDRASEKHARAN K.A., Cryst. Res. Technol., 40 (2005), 782.
  • [24] SANGWAL K., Mater. Chem. Phys., 63 (2000), 145.
  • [25] WOOSTER W.A., Rep. Prog. Phys., 16 (1953), 62.
  • [26] KRISHNAN S., RAJ C.J., ROBERT R., RAMANAND A., DAS S.J., Soli. Stat. Elect., 52 (2008), 1157.
  • [27] VONHIPPEL A.R., Materials and Applications, New York, (1965), 79. [28] SHEIK-BAHAE M., SAID A.A., WEI T., HAGAN D.J., STRYLAND E.W.V., IEEE J. Quant. Elect., 26 (1990), 760.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53b9cd84-b95b-4d31-8e3e-6aa5ccf5f33b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.