Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Composite functional equations in several variables generalizing the Gołąb-Schinzel equation are considerd and some simple methods allowing us to determine their one-to-one solutions, bijective solutions or the solutions having exactly one zero are presented. For an arbitrarily fixed real p, the functional equation Φ([pφ(y) + (1−p)]x +[(1−p)φ(x)+p]y) = φ(x)φ(y), x,y ∈ R, being a special generalization of the Gołąb-Schinzel equation, is considered.
Rocznik
Tom
Strony
81--90
Opis fizyczny
Bibliogr. 3 poz.
Twórcy
autor
- Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra, Podgórna 50 65246 Zielona Góra, Poland
- Institute of Mathematics, Silesian University Bankowa 14, 0007 Katowice, Poland
autor
- Department of Mathematics, ATH Bielsko-Biała, Poland
Bibliografia
- [1] J. Aczél. Lectures on Functional Equations and Their Applications,Academic Press, New York, 1966.
- [2] S. Gołąb, A. Schinzel. Sur l' équation fonctionnelle f[x + y f (x)] = f (x) f (y). Publ. Math. Debrecen, 6, 113-125, 1959.
- [3] P. Kahlig, J. Matkowski. On some extension of Gołąb-Schinzel functional equation. Ann. Math. Siles., 8, 13-31, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53b94c6c-304d-4023-8d4b-5f111180f9ad