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Abstract. Composite functional equations in several variables generalizing the

Goª¡b�Schinzel equation are considerd and some simple methods allowing us to de-

termine their one-to-one solutions, bijective solutions or the solutions having exactly

one zero are presented. For an arbitrarily �xed real p, the functional equation

φ ([p φ(y) + (1 − p)]x+ [(1− p)φ(x) + p ]y) = φ(x)φ(y), x, y ∈ R,

being a special generalization of the Goª¡b�Schinzel equation, is considered.

1. Introduction

Composite functional equations in several variables, i.e. equations involv-

ing the superpositions of unknown functions, represent an important class of

equations. The translation equation (cf. Aczél [1], p. 245),

φ(φ(x, s), t) = φ(x, s + t),

the Goª¡b�Schinzel equation ([2], see also [1], pp. 311�312)

φ(x+ yφ(x)) = φ(x)φ(y), (1)
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or the equation [3]

φ(x+ yφ(x)) + φ(x− yφ(x)) = 2φ(x)φ(y), (2)

are the examples. In section 1, we consider more general functional equations

than (1) and (2) and give some conditions allowing us to determine their one-

to-one solutions, bijective solutions or the solutions having exactly one zero.

In section 2, for an arbitrarily �xed real p, we deal with the functional equation

φ ([p φ(y) + (1− p)]x+ [(1− p)φ(x) + p ]y) = φ(x)φ(y), x, y ∈ R,

being a special generalization of equation (1).

2. Main result

Let X be a set. For a function φ : X → X and a positive integer number k,
by the symbol φk we denote the kth iteration of the function φ.

The following result reduces the problem of determining the solutions of

a functional equation of a composite type to an application of the implicit

function theorem.

Theorem 1. Let m, n ∈ N be �xed. Let I, I1 ⊆ R be intervals such that

0 ∈ I1 and I1 ⊂ I. Let G : (I × I1)2 �→ I and H : (I × In1 )× (I × Im1 ) �−→ I1.
Suppose that for all x, y ∈ I; x1, . . . , xn, y2, . . . , ym ∈ I1,

H(x, x1, x2, . . . , xn, y, 0, y2, . . . , ym) = 0. (3)

If a function φ : I �−→ I1 satis�es the functional equation

φ(G(x, φ(x), y, φ(y)))=H(x, φ(x), φ2 (x), . . . , φn(x), y, φ(y), φ2(y) . . . , φm(y))
(4)

for all x, y ∈ I and there exists exactly one z0 ∈ I such that φ(z0) = 0, then

G(x, φ(x), z0, 0) = z0, x ∈ I.

Proof. Taking y = z0 in equation (4) and applying condition (3), we get

φ(G(x, φ(x), z0, 0)) = 0, x ∈ I.

Since φ has exactly one zero, we obtain G(x, φ(x), z0, 0) = z0 for all x ∈ I.
This completes the proof. �

Remark 1. Equation (4) generalizes the Goª¡b�Schinzel equation (1).
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In what follows, for p ∈ R and φ : X → (0,∞) the symbol X 5 x→ [φ(x)]p

stands for the superposition of the power function (0,∞) 5 u→ up and φ.

Now we present some applications of Theorem 1.

Corollary 1. Let k, l ∈ N be �xed and let φ : R �−→ R be a function with

exactly one zero point. Then φ satis�es the functional equation

φ
(
x+ y[φ(x)]

2k−1
2l−1

)
= φ(x)φ(y), x, y ∈ R, (5)

if and only if for some c ∈ R, c �= 0,

φ(x) = (cx+ 1)
2l−1
2k−1 , x ∈ R . (6)

Proof. In Theorem 1 take I = I1 = R , n = m = 1 and de�ne

G : R4 �−→ R by

G(x, x1, y, y1) := x+ y(x1)
2k−1
2l−1 , x, x1, y , y1 ∈ R,

and H : R4 �−→ R by

H(x, x1, y, y1) := x1y1, x, x1, y, y1 ∈ R.

Suppose that φ : R → R satis�es equation (5) and has exactly one zero z0 ∈ R.

Since H(x, x1, z0, 0) = 0 for all x, x1 ∈ R, the assumptions of Theorem 1 are

ful�lled. From (5), applying Theorem 1, we get

G(x, φ(x), z0 , 0) = z0, x ∈ R,

that is

x+ z0[φ(x)]
2k−1
2l−1 = z0, x ∈ R,

whence z0 �= 0 and

φ(x) =
(
1− x

z0

) 2l−1
2k−1

, x ∈ R.

Putting here c := − 1
z0
, we obtain (6). Since φ given by (6) satis�es equation

(5), the proof is completed. �

Remark 2. It is known that (cf. [1], pp. 132-133) if φ : R �−→ R is a con-

tinuous solution of the Goª¡b�Schinzel equation

φ(x+ yφ(x)) = φ(x)φ(y), x, y ∈ R,
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then there exists c ∈ R \ {0} such that either

φ(x) = sup{cx+ 1, 0}, x ∈ R,

or there exists c ∈ R such that

φ(x) = cx+ 1, x ∈ R, (7)

or

φ(x) = 0, x ∈ R.

The second solution can be obtained from Corollary 1 in a di�erent way.

Taking k = l in the equation (5) and applying Corollary 1, we obtain (7) as a

only solution having only zero in R.

Corollary 2. Let a < 0 and p ∈ R, p > 0, be �xed. Suppose that

φ : [a,∞) �−→ [0,∞) has exactly one zero in [a,∞). A function φ satis�es the

functional equation

φ (x+ y[φ(x)]p) = φ(x)φ(y), x ≥ a, y ≥ 0, (8)

if and only if

φ(x) =
(
1− x

a

) 1
p
, x ≥ a. (9)

Proof. Suppose that φ : [a,∞) �−→ [0,∞) satis�es equation (8) and z0 ≥ a
is the only zero of φ. In Theorem 1 take n = m = 1, I := [a,∞), I1 := [0,∞),
the function G : (I × I1)2 �−→ I de�ned by

G(x, x1, y, y1) := x+ y(x1)p, x, y ∈ I, x1, y1 ∈ I1,

and the function H : (I × I1)2 �−→ I1 de�ned by

H(x, x1, y, y1) := x1y1, x, y ∈ I, x1, y1 ∈ I1.

Since H(x, x1, y, 0) = 0, for all x, y ∈ I, x1 ∈ I1, the assumptions of Theo-

rem 1 are satis�ed. Therefore

G(x, φ(x), z0, 0) = z0, x ∈ I,

so x+ z0[φ(x)]p = z0 for all x ≥ a. It follows that z0 �= 0 and, consequently,

φ(x) = (1− x

z0
)

1
p , x ≥ a.

Since φ is non�negative, we have 1− x
z0
≥ 0 for all x ∈ [a,∞). Thus z0 = a.

Since the converse implication is easy to verify, the proof is completed. �
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Remark 3. Note that for p = 0 equation (8) in Corollary 2 becomes the

Cauchy functional equation.

Theorem 2. Let n ∈ N be �xed. Let I, I1 be intervals such that I1 ⊂ I ⊆ R.

Let G : (I × I1)2 �−→ I and H : (I × In1 )
2 �−→ I1 be given functions. Suppose

that H is symmetric, that is

H(x, x1, x2, . . . , xn, y, y1, y2, . . . , yn) = H(y, y1, y2, . . . , yn, x, x1, x2, . . . , xn)
(10)

for all x, y ∈ I, x1, x2, . . . , xn, y1, y2, . . . , yn ∈ I1.
If φ : I �−→ I1 is a solution of the functional equation

φ(G(x, φ(x), y, φ(y))) = H(x, φ(x), φ2(x), . . . , φn(x), y, φ(y), φ2(y) . . . , φn(y))
(11)

for all x, y ∈ I, then

φ(G(x, φ(x), y, φ(y))) = φ(G(y, φ(y), x, φ(x))), x, y ∈ I.

If, moreover φ is one-to-one function, then

G(x, φ(x), y, φ(y)) = G(y, φ(y), x, φ(x)), x, y ∈ I. (12)

Proof. Suppose that φ : I �−→ I1 satis�es Eq. (11) andH : (I×In1 )2 �−→ I1
satis�es condition (10). Then for all x, y ∈ I we have

φ(G(x, φ(x), y, φ(y))) = H(x, φ(x), φ2(x), . . . , φn(x), y, φ(y), φ2(y) . . . , φn(y))

= H(y, φ(y), φ2(y), . . . , φn(y), x, φ(x), φ2(x) . . . , φn(x))

= φ(G(y, φ(y), x, φ(x))),

so,

φ(G(x, φ(x), y, φ(y))) = φ(G(y, φ(y), x, φ(x))), x, y ∈ I.

If φ is one-to-one, then obviously equality (12) holds true.

Remark 4. If the function G in Theorem 2 is not symmetric, then in general

equality (12) allows us to obtain the one-to-one solutions of (11).

Applying Theorem 2 we obtain
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Corollary 3. Let a, p ∈ R be �xed and such that a < 0, p �= 0. A one-to-one

function φ : (a,∞) �−→ (0,∞) satis�es the functional equation

φ (x+ y[φ(x)]p) = φ(x)φ(y) , x > a, y ≥ 0, (13)

if, and only if,

φ(x) =
(
1− x

a

) 1
p
, x > a. (14)

Proof. In Theorem 2 take n = 1, I = (a,∞), I1 = (0,∞), the function

G : (I × I1)2 �−→ I de�ned by

G(x, x1, y, y1) := x+ y(x1)p, x, y ∈ I, x1, y1 ∈ I1,

and H : (I × I1)2 �−→ I1 de�ned by

H(x, x1, y, y1) := x1y1 x, y ∈ I, x1, y1 ∈ I1,

Since

H(x, x1, y, y1) = H(y, y1, x, x1), x, y ∈ I, x1, y1 ∈ I1,

the assumptions of Theorem 2 are satis�ed. Applying Theorem 2, we have

from (12):

x+ y[φ(x)]p = y + x[φ(y)]p, x, y ∈ I,

whence

[φ(x)]p − 1
x

=
[φ(y)]p − 1

y
, x, y ∈ I, x, y �= 0.

So, there exists a constant c ∈ R \ {0} such that

x−1([φ(x)]p − 1) = c

for all x ∈ I, x �= 0. Hence

φ(x) = (cx+ 1)
1
p , x > a, x �= 0.

Equation (13) implies that

cx+ 1 > 0, x > a,
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and, consequently, ca+1 ≥ 0. On the other hand, if φ satis�es equation (13),

then obviously the following inequality

x+ y[(cx+ 1)
1
p ]p > a, x, y > a,

is true, which means that

x+ y[(cx+ 1)] > a, x, y > a.

It follows that a + ca2 + a ≥ a, so ca+ 1 ≤ 0. Both inequalities imply that

ca+ 1 = 0, whence c = − 1
a , and φ has to be of the form (14).

To show that the function φ given by (14) satis�es equation (13), let us

note that

x+ y[φ(x)]p > a, x, y > a.

In fact, this inequality is equivalent to (x− a)(y − a) > 0. Now, it is easy to

verify that (14) satis�es equation (13). This completes the proof. �

Remark 5. Taking a, p ∈ R, a < 0 , and p > 0, we can show in the same way

that the one�to�one function φ : [a,+∞) �−→ [0,+∞) satis�es the functional

equation

φ (x+ y[φ(x)]p) = φ(x)φ(y), x, y ≥ a,

if and only if

φ(x) =
(
1− x

a

) 1
p
, x ≥ a.

Remark 6. Let I, I1 ⊆ R be intervals. Let G : (I × I1)2 �−→ I and

H : I1×I1 �−→ I1 be the given functions. Assume that φ : I �−→ I1, φ(I) = I1
is a bijective solution of the functional equation

φ(G(x, φ(x), y, φ(y))) = H(φ(x), φ(y)), x, y ∈ I. (15)

Then the function φ−1 : I1 �−→ I satis�es the (non-composite) functional

equation

G(φ−1(x), x, φ−1(y), y) = φ−1(H(x, y)), x, y ∈ I1. (16)

In fact, putting φ−1(x) in place of x and φ−1(y) in place of y in equation

(15), we obtain (16).

Sometimes the above remark allows us to determine e�ectively the bijective

solutions for functional equations of form (15). We have the following
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Corollary 4. Let k, l ∈ N be �xed and let I = I1 = R. The bijection function

φ : R �−→ R satis�es functional equation

φ
(
x+ y[φ(x)]

2k−1
2l−1

)
= φ(x)φ(y), x, y ∈ R, (17)

if and only if

φ(x) = (cx+ 1)
2l−1
2k−1 , x ∈ R, (18)

for some c ∈ R, c �= 0.

Proof. According to Remark 6, a bijection φ : R �→ R satis�es equation

(17) if and only if φ−1 : R �→ R satis�es the equation

φ−1(x) + φ−1(y)x
2k−1
2l−1 = φ−1(xy), x, y ∈ R.

Putting here y = 0, we obtain

φ−1(x) = φ−1(0)
(
1− x

2k−1
2l−1

)
, x ∈ R,

which implies (18). �

3. A special generalization of Goª¡b�Schinzel
functional equation

In this section we examine the functional equation

φ ([p φ(y) + (1− p)]x+ [(1− p)φ(x) + p ]y) = φ(x)φ(y), x, y ∈ R, (19)

where p ∈ R is an arbitrarily �xed parameter. For p = 0 or p = 1 it reduces

to the classical Goª¡b�Schinzel equation.

Theorem 3. Let p ∈ R be �xed.

1. If p �= 1
2 , then the one-to-one function φ : R �−→ R satis�es (19) if and

only if

φ(x) = cx+ 1, x ∈ R,

for some c ∈ R \ {0}.

2. If p = 1
2 , then bijection φ : R �−→ R satis�es (19) if and only if

φ(x) = cx+ 1, x ∈ R,

for some c ∈ R \ {0}.
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Proof. Take n = 1, I = R and de�ne G : (R× R)2 �−→ R by

G(x, x1, y, y1) := [py1 + (1− p)]x+ [(1− p)x1 + p]y, x, y, x1, y1 ∈ R,

and H : (R× R)2 �−→ R by

H(x, x1, y, y1) := x1y1, x, y, x1, y1 ∈ R.

Note, that

H(x, x1, y, y1) = H(y, y1, x, x1), x, y, x1, y1 ∈ R.

Applying Theorem 2, we obtain

[pφ(y) + (1− p)]x+ [(1− p)φ(x) + p]y

= [pφ(x) + (1− p)]y + [(1− p)φ(y) + p]x

for all x, y ∈ R , whence

(2p − 1)[x(φ(y) − 1)] = (2p− 1)[y(φ(x) − 1)] , x, y ∈ R.

If p �= 1
2 , hence we get

φ(x) − 1
x

=
φ(y)− 1

y
, x, y ∈ R \ {0}.

Therefore, there exists a constant c ∈ R \ {0} such that φ(x) = cx+ 1 for all

x ∈ R \ {0}. Putting x = y = 0 in equation (19), we get [φ(0)] = [φ(0)]2,
consequently we obtain either φ(0) = 0 or φ(0) = 1. Since φ is one�to�one

and φ(−1
c ) = 0, the case φ(0) = 0 cannot occur. Thus φ(x) = cx+1 for all

x ∈ R.
For p = 1

2 equation (19) has the form:

φ

(
1
2
[x(φ(y) + 1) + y(φ(x) + 1)]

)
= φ(x)φ(y), x, y ∈ R. (20)

If a bijection φ : R �−→ R satis�es (20), then according to the Remark 2 the

function φ−1 : R �−→ R satis�es the equation

2φ−1(xy) = (y + 1)φ−1(x) + (x+ 1)φ−1(y), x, y ∈ R.

Putting here y = 0 , we get

2φ−1(0) = φ−1(x) + (x+ 1)φ−1(0), x ∈ R.
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Hence, as φ−1(0) �= 0,

φ−1(x) = φ−1(0)(1 − x), x ∈ R,

whence

φ(x) = 1− 1
φ−1(0)

x, x ∈ R. �

Theorem 4. Let p ∈ R be �xed. A function φ : R �−→ R satis�es equation

(19) and has exactly one zero if and only if there exists a constant c ∈ R \ {0}
such that

φ(x) = cx+ 1, x ∈ R.

Proof. Note that substitution of (1 − p) for p in equation (19) gives

the same equation. Thus, without any loss of generality, we can assume that

p �= 1. Take n = m = 1, I = I1 = R, and de�ne H : (R× R)2 �→ R by

H(x, x1, y, y1) := x1y1, x, x1, y, y1 ∈ R, (21)

and G : (R× R)2 �→ R by

G(x, x1, y, y1) := [py1 + (1− p)]x+ [(1− p)x1 + p]y, x, x1, y, y1 ∈ R.

Suppose that φ : R → R satis�es equation (19) and z0 �= 0 is a unique zero

of φ. Note that if y = z0, then H(x, x1, z0, 0) = 0 for all x, x1 ∈ R, so the

function (21) satis�es the condition (3) of Theorem 1. Therefore, if φ satis�es

equation (19), then

(1− p)x+ [(1− p)φ(x) + p]z0 = z0, x ∈ R.

Hence we obtain φ(x) = 1− x
z0

for all x ∈ R. �
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