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Abstract. We consider the half-linear differential equation

(|x′|αsgn x′)′ + q(t)|x|αsgn x = 0, t ≥ t0,

under the condition

lim
t→∞

tα
∞∫

t

q(s)ds = αα

(α+ 1)α+1 .

It is shown that if certain additional conditions are satisfied, then the above equation
has a pair of nonoscillatory solutions with specific asymptotic behavior as t → ∞.
Keywords: asymptotic behavior, nonoscillatory solution, half-linear differential
equation.
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1. INTRODUCTION

In this paper we consider the half-linear ordinary differential equation

(|x′|αsgn x′)′ + q(t)|x|αsgn x = 0, t ≥ t0, (1.1)

where α is a positive constant and q(t) is a real-valued continuous function on an
interval [t0,∞), t0 > 1.

If α = 1, then (1.1) becomes the linear equation

x′′ + q(t)x = 0, t ≥ t0. (1.2)

It is known that basic results and qualitative results for the linear equation (1.2) can
be generalized to the half-linear equation (1.1). The important works for (1.1) are
summarized in the book of Došlý and Řehák [2].
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In this paper the half-linear equation (1.1) is considered under the condition that

∞∫

t0

q(s)ds = lim
t→∞

t∫

t0

q(s)ds exists and is finite. (1.3)

Then we define the function Q(t) by

Q(t) =
∞∫

t

q(s)ds, t ≥ t0. (1.4)

Now, for the equation (1.1), we put

E(α) = αα

(α+ 1)α+1 . (1.5)

Let c be an arbitrary and fixed real number, and consider the following equation with
respect to ρ

|ρ|(α+1)/α − ρ+ c = 0. (1.6)
It is easily checked that if c < E(α), then (1.6) has two real roots ρ1, ρ2 (ρ1 < ρ2), and
they satisfy ρ1 < (α+ 1)E(α) < ρ2. It is also seen that if c = E(α), then (1.6) has the
double root ρ = (α+ 1)E(α). If c > E(α), then the left-hand side of (1.6) is positive
for all ρ ∈ R, and so (1.6) has no real root. For the case c ≤ E(α), the condition

lim
t→∞

tαQ(t) = c (1.7)

plays an important role in the asymptotic analysis of nonoscillatory solutions of (1.1).
It is known that if

−(2α+ 1)E(α) < lim inf
t→∞

tαQ(t) ≤ lim sup
t→∞

tαQ(t) < E(α),

then (1.1) is nonoscillatory (see [2, Theorem 2.2.9]); and if

lim inf
t→∞

tαQ(t) > E(α),

then (1.1) is oscillatory (see [2, Theorem 2.3.2]). If c = E(α) in (1.7), then it is a critical
case in the sense that c = E(α) is the borderline between nonoscillation and oscillation
of (1.1). As an important work in the critical case, we refer the reader to [4], in which
oscillation criteria and nonoscillation criteria are obtained for a perturbed Euler type
half-linear differential equation in the critical case. See also the recent paper [1].

For the case c < E(α), the following theorem has been proved by Jaroš, Kusano
and Tanigawa [5, Theorem 3.1]. As usual, the asterisk notation

ξγ∗ = |ξ|γsgn ξ, ξ ∈ R, γ > 0,

is used.



Existence and asymptotic behavior of nonoscillatory solutions of. . . 223

Theorem 1.1 ([5]). Consider the equation (1.1) under the condition (1.3). Let
c ∈ (−∞, E(α)) be fixed and let ρ1, ρ2 (ρ1 < ρ2) be the real roots of (1.6). If
(1.7) is satisfied, then (1.1) has a pair of solutions xi(t) (i = 1 and 2) such that

lim
t→∞

t
x′

i(t)
xi(t)

= ρ
(1/α)∗
i (i = 1, 2). (1.8)

In the paper [5], the results are stated in terms of regularly varying functions.
Now, put

ε(t) = tαQ(t) − c, t ≥ t0, (1.9)
where Q(t) is given by (1.4). Then the condition

∞∫

t0

|ε(t)|
t

dt < ∞ (1.10)

plays an important part. In fact, the author has recently proved the following theorem
([11, Theorem 1.3]).
Theorem 1.2 ([11]). Consider the equation (1.1) under the condition (1.3). Let
c ∈ (−∞, E(α)) be fixed and let ρ1, ρ2 be the real roots of (1.6) such that ρ1 < ρ2 and
ρ1 ≠ 0. Suppose that (1.7) holds and define ε(t) by (1.9). If (1.10) is satisfied, then
(1.1) has a pair of solutions xi(t) (i = 1 and 2) such that




xi(t) ∼ tλi as t → ∞,

x′
i(t) ∼ λit

λi−1 as t → ∞,
(1.11)

where λi = ρ
(1/α)∗
i (i = 1, 2).

Here, the notation f(t) ∼ g(t) as t → ∞ means that limt→∞[f(t)/g(t)] = 1.
Note that (1.11) implies (1.8) (i = 1, 2).
For the critical case c = E(α), the following theorem has been proved by Jaroš,

Kusano and Tanigawa [5, Theorem 3.2]. The theorem requires the additional condition
∞∫

t0

1
t




∞∫

t

|ε(s)|
s

ds


 dt < ∞. (1.12)

Theorem 1.3 ([5]). Consider the equation (1.1) under the condition (1.3). Sup-
pose that (1.7) with c = E(α) holds and define ε(t) by (1.9) (c = E(α)).
If (1.10) and (1.12) are satisfied, then (1.1) has a solution x(t) such that

x(t) ∼ tα/(α+1) and x′(t) ∼ α

α+ 1 t
−1/(α+1) as t → ∞.

It is also known ([2, Section 1.4.2], [3]) that, for the case c = E(α) and ε(t) ≡ 0,
i.e., q(t) = αE(α)/tα+1, the equation (1.1) has a pair of nonoscillatory solutions xi(t)
(i = 1, 2) such that

x1(t) = tα/(α+1) and x2(t) ∼ tα/(α+1)(log t)2/(α+1) (t → ∞).
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In the present paper, we restrict our attention to the critical case c = E(α) and
make deeper discussions on the existence and asymptotic behavior of nonoscillatory
solutions of (1.1). In what follows, we assume (1.7) with c = E(α), i.e.,

lim
t→∞

tαQ(t) = E(α). (1.13)

As in the above, we put
ε(t) = tαQ(t) − E(α). (1.14)

Then, for the case where (1.10) holds, the conditions

∞∫

t0

1
s




∞∫

s

|ε(σ)|
σ

dσ




2

ds < ∞ (1.15)

and
∞∫

t

1
s




∞∫

s

|ε(σ)|
σ

dσ




2

ds = o




∞∫

t

|ε(s)|
s

ds


 as t → ∞ (1.16)

are also important. We have the following theorem.
Theorem 1.4. Consider the equation (1.1) under the condition (1.3). Define Q(t)
by (1.4). Suppose that (1.13) holds and define ε(t) by (1.14). If the conditions (1.10),
(1.15) and (1.16) are satisfied, then (1.1) has a nonoscillatory solution x(t) such that

lim
t→∞

t
x′(t)
x(t) = α

α+ 1 . (1.17)

For the case c < E(α) (i.e., the case where (1.6) has two distinct real roots ρi),
if (1.7) holds, then (1.1) has nonoscillatory solutions xi(t) satisfying (1.8) (see The-
orem 1.1). For the critical case c = E(α) (i.e., the case where (1.6) has the double
root ρ = (α + 1)E(α)), the condition (1.13) alone is not sufficient to guarantee the
existence of a nonoscillatory solution of (1.1). For instance, the half-linear equation

(|x′|αsgn x′)′ +
(
αE(α)
tα+1 + ν

tα+1(log t)2

)
|x|αsgn x = 0, t ≥ 1,

is oscillatory if ν > (α+ 1)E(α)/2 and nonoscillatory if ν ≤ (α+ 1)E(α)/2 (see [4]).
Theorem 1.4 shows that, under the additional conditions (1.10), (1.15) and (1.16), the
equation (1.1) has a nonoscillatory solution x(t) satisfying (1.17).

We can show that, for the case where (1.10) holds, the condition

(log t)
∞∫

t

|ε(s)|
s

ds → 0 as t → ∞ (1.18)

implies (1.15) and (1.16) (see (II) of Lemma 2.5 in the next section). Therefore,
Theorem 1.4 produces the following corollary.
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Corollary 1.5. Consider the equation (1.1) under the condition (1.3). Define Q(t)
by (1.4). Suppose that (1.13) holds and define ε(t) by (1.14). If (1.10) and (1.18) hold,
then (1.1) has a nonoscillatory solution x(t) which satisfies (1.17).

The next theorem shows that a pair of nonoscillatory solutions can be obtained
under the additional condition

lim
t→∞

(log t)ε(t) = 0. (1.19)

Theorem 1.6. Consider the equation (1.1) under the condition (1.3). Define Q(t)
by (1.4). Suppose that (1.13) holds and define ε(t) by (1.14). If (1.10) and (1.18) and
(1.19) are satisfied, then (1.1) has a pair of nonoscillatory solutions xi(t) (i = 1, 2)
such that

lim
t→∞

(log t)
(
t
x′

1(t)
x1(t) − α

α+ 1

)
= 0, (1.20)

and
lim

t→∞
(log t)

(
t
x′

2(t)
x2(t) − α

α+ 1

)
= 2
α+ 1 . (1.21)

In the next section we will prove that, under the condition (1.10), the condition
(1.12) implies (1.18), that is, (1.12) is stronger than (1.18). For the case where (1.12)
holds, at least one nonoscillatory solution is obtained in Theorem 1.3. The next theorem
shows that another nonoscillatory solution is obtained under the same conditions.

Theorem 1.7. Consider the equation (1.1) under the condition (1.3). Define Q(t)
by (1.4). Suppose that (1.13) holds and define ε(t) by (1.14). If (1.10) and (1.12) are
satisfied, then (1.1) has a pair of nonoscillatory solutions xi(t) (i = 1, 2) such that

{
x1(t) ∼ tα/(α+1) (t → ∞),
x′

1(t) ∼ α

α+ 1 t
−1/(α+1) (t → ∞), (1.22)

and 


x2(t) ∼ tα/(α+1)(log t)2/(α+1) (t → ∞),

x′
2(t) ∼ α

α+ 1 t
−1/(α+1)(log t)2/(α+1) (t → ∞).

(1.23)

Throughout the paper the following fact plays an essential part. Let x(t) be
a nonoscillatory solution of (1.1). We suppose that x(t) > 0 for t ≥ T (≥ t0). Put

y(t) =
(
x′(t)
x(t)

)α∗
, t ≥ T. (1.24)

Then, y(t) satisfies the generalized Riccati equation

y′(t) = −q(t) − α|y(t)|(α+1)/α, t ≥ T. (1.25)
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Conversely, if y(t) is a solution of (1.25) on [T,∞), then

x(t) = exp




t∫

T

y(s)(1/α)∗ds


 , t ≥ T, (1.26)

is a positive solution of (1.1) on [T,∞). The proof is immediate.
Now, suppose that x(t) is a nonoscillatory solution of (1.1) such that

lim
t→∞

t
x′(t)
x(t) = λ for some λ ∈ R. (1.27)

The solution x = x(t) in Theorem 1.4 and the solutions x = xi(t) (i = 1, 2) in
Theorems 1.6 and 1.7 satisfy (1.27) (λ = α/(α + 1)). We suppose that x(t) > 0 for
t ≥ T (≥ t0), and define the function y(t) by (1.24). Then it is seen (for example, see
[11, Proposition 1.2]) that (1.3) holds and y(t) satisfies

y(t) = Q(t) + α

∞∫

t

|y(s)|(α+1)/αds, t ≥ T, (1.28)

where Q(t) is defined by (1.4). This fact also plays a crucial part in the present paper.
In the next section we give a few number of preparatory lemmas. The so-

lution x(t) in Theorem 1.4 and the solutions xi(t) (i = 1, 2) in Theorems 1.6
and 1.7 are obtained by solving certain integral equations similar to those used
in [11]. The proofs of Theorem 1.4 and Theorems 1.6 and 1.7 in the case i = 1
are presented in Section 3. The proofs of Theorems 1.6 and 1.7 in the case
i = 2 are given in Section 4. Examples illustrating the main results are provided
in Section 5.

The present paper is related to regularly varying solutions of (1.1). A function x(t)
which satisfies (1.27) is a normalized regularly varying function of index λ. Recent
results on regularly varying solutions of the half-linear equation (1.1) are found, e.g.,
in [5–9,13,14]. However, in the present paper, the theory of regularly varying functions
is not used.

The papers [6, 8–14] deal with a more general equation

(p(t)|x′|αsgn x′)′ + q(t)|x|αsgn x = 0, t ≥ t0, (1.29)

where p(t) is a positive continuous function on [t0,∞). For the case
∞∫

t0

p(s)−1/αds = ∞,

the change of variables (t, x) → (τ, y) given by

τ =
t∫

t0

p(s)−1/αds, y(τ) = x(t)
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transforms (1.29) into

(|ẏ|αsgn ẏ)̇ + p(t)1/αq(t)|y|αsgn y = 0, τ ≥ 0
(

˙ = d

dτ

)
, (1.30)

which is the same form as (1.1). Then we can apply the results for (1.1) to (1.30), and,
after transforming back, we get the results for (1.29).

For the complementary case

∞∫

t0

p(s)−1/αds < ∞, (1.31)

it is impossible to apply the results in the present paper to the equation (1.29).
Nevertheless, it may be conjectured that analogous results for (1.29) with (1.31)
can be established. For example, observe an analogy between [11] and [12].
The precise statements, however, are unclear at this stage.

2. PREPARATORY RESULTS

To prove our results, we prepare a few number of lemmas.

Lemma 2.1. Let λ ̸= 0 be fixed. Let w and ε be real numbers with |ε| ≤ |λ|α/4. The
function

F (w, ε) = |w + λα∗ + ε|(α+1)/α − |λα∗ + ε|(α+1)/α

− α+ 1
α

(λα∗ + ε)(1/α)∗w
(2.1)

satisfies

0 ≤ F (w, ε) ≤ K(α)|λ|−α+1w2
(

|w| ≤ |λ|α
4 , |ε| ≤ |λ|α

4

)
,

where

K(α) =





α+ 1
2α2

(
3
2

)(−α+1)/α

(0 < α ≤ 1),

α+ 1
2α2

(
1
2

)(−α+1)/α

(α > 1).

Note that the function F (w, ε) defined by (2.1) arises naturally in [5]. For a brief
proof of Lemma 2.1, see Naito [10, Lemma 2.4].
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Lemma 2.2. Let λ > 0, v0 > 0 and T > 1 be fixed. Let t, v and ε be real numbers
with t ≥ T and |ε| ≤ λα/4. If

v0 + 2λα ≤ 1
4λ

α log T, (2.2)

then the function

G(t, v, ε) =
∣∣∣∣
v + 2λα

log t + λα + ε

∣∣∣∣
(α+1)/α

− (λα + ε)(α+1)/α

− α+ 1
α

(λα + ε)1/α v + 2λα

log t

− α+ 1
2α2 (λα + ε)(1/α)−1

(
v + 2λα

log t

)2

(2.3)

satisfies

|G(t, v, ε)| ≤ L(α)λ−2α+1
∣∣∣∣
v + 2λα

log t

∣∣∣∣
3 (

t ≥ T, |v| ≤ v0, |ε| ≤ λα

4

)
,

where

L(α) =





(α+ 1)|α− 1|
6α3

(
3
2

)(1/α)−2
(0 < α ≤ 1/2),

(α+ 1)|α− 1|
6α3

(
1
2

)(1/α)−2
(α > 1/2).

Proof. By Taylor’s theorem, there exists θ ∈ (0, 1) such that

(x+ a)p = ap + pap−1x+ p(p− 1)
2 ap−2x2 + p(p− 1)(p− 2)

6 (θx+ a)p−3x3,

where a > 0, x > −a and p ∈ R. Let t ≥ T , |v| ≤ v0 and |ε| ≤ λα/4. Then we apply
the above equality to the case a = λα + ε, x = (v + 2λα)/ log t and p = (α + 1)/α.
To this aim, note first that a ≥ 3λα/4 > 0. By (2.2), we have

v0 ≤ 1
4λ

α log T, (2.4)

and so x+ a ≥ (v/ log t) + (3λα/4) ≥ (−v0/ log T ) + (3λα/4) ≥ λα/2 > 0. Then it is
seen that

|G(t, v, ε)| = (α+ 1)|α− 1|
6α3

∣∣∣∣θ
v + 2λα

log t + λα + ε

∣∣∣∣
(1/α)−2 ∣∣∣∣

v + 2λα

log t

∣∣∣∣
3
.

Since −v0 ≤ v + 2λα ≤ v0 + 2λα and 0 < θ < 1, it follows from (2.2) and (2.4) that

1
2λ

α ≤ θ
v + 2λα

log t + λα + ε ≤ 3
2λ

α.

Then the assertion of Lemma 2.2 is immediate.
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Lemma 2.3. Let λ ̸= 0. Then
∣∣∣|λα∗ + ε|(α+1)/α − |λ|α+1

∣∣∣ ≤ 2α+ 1
α

|λ||ε|, (2.5)
∣∣∣(λα∗ + ε)(1/α)∗ − λ

∣∣∣ ≤ 2
α

|λ|−α+1|ε|, and (2.6)
∣∣∣|λα∗ + ε|(1/α)−1 − |λ|1−α

∣∣∣ ≤ 2 |α− 1|
α

|λ|−2α+1|ε| (2.7)

for all sufficiently small |ε|.
Proof. Since

lim
ε→0

|λα∗ + ε|(α+1)/α − |λ|α+1

ε
= α+ 1

α
λ,

lim
ε→0

(λα∗ + ε)(1/α)∗ − λ

ε
= 1
α

|λ|−α+1 (λ ̸= 0), and

lim
ε→0

|λα∗ + ε|(1/α)−1 − |λ|1−α

ε
= −α+ 1

α
|λ|−2α+1sgnλ (λ ̸= 0),

the assertions (2.5)–(2.7) are clear.

Lemma 2.4. Let λ > 0. Then∣∣∣∣(λα + δ)(1/α)∗ − λ− λ−α+1

α
δ

∣∣∣∣ ≤ |α− 1|
α2 λ−2α+1δ2 (2.8)

for all sufficiently small |δ|.
Proof. Since

lim
δ→0

(λα + δ)(1/α)∗ − λ− (λ−α+1/α)δ
δ2 = 1

2
1
α

(
1
α

− 1
)
λ−2α+1,

the assertion (2.8) is obvious.

Lemma 2.5. Let ε(t) be a continuous function on [t0,∞), t0 > 1, and suppose that
(1.10) holds. Then:

(I) the condition (1.12) implies (1.18),
(II) the condition (1.18) implies (1.15) and (1.16).
Proof. (I) Let τ > t0. An integration by parts gives

τ∫

t0

1
t




∞∫

t

|ε(s)|
s

ds


 dt

= (log τ)
∞∫

τ

|ε(s)|
s

ds− (log t0)
∞∫

t0

|ε(s)|
s

ds+
τ∫

t0

(log s) |ε(s)|
s

ds

≥ −(log t0)
∞∫

t0

|ε(s)|
s

ds+
τ∫

t0

(log s) |ε(s)|
s

ds.
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Therefore, by (1.12), we find that
∞∫

t0

(log s) |ε(s)|
s

ds < ∞, (2.9)

and hence

lim
τ→∞

(log τ)
∞∫

τ

|ε(s)|
s

ds exists and is a nonnegative finite value.

Put

lim
τ→∞

(log τ)
∞∫

τ

|ε(s)|
s

ds = ℓ,

where 0 ≤ ℓ < ∞. Assume that 0 < ℓ < ∞. Then there is T > t0 such that

log τ ≥ ℓ

2




∞∫

τ

|ε(s)|
s

ds




−1

for τ ≥ T.

Consequently we have
∞∫

T

(log s) |ε(s)|
s

ds = lim
τ→∞

τ∫

T

(log s) |ε(s)|
s

ds

≥ ℓ

2 lim
τ→∞

τ∫

T




∞∫

s

|ε(σ)|
σ

dσ




−1
|ε(s)|
s

ds

= − ℓ

2 lim
τ→∞


log




∞∫

τ

|ε(σ)|
σ

dσ


 − log




∞∫

T

|ε(σ)|
σ

dσ







= ∞,

which is a contradiction to (2.9). Therefore we have ℓ = 0. This implies (1.18).
(II) Let t0 ≤ t < τ . An integration by parts gives

τ∫

t

1
s




∞∫

s

|ε(σ)|
σ

dσ




2

ds

= (log τ)




∞∫

τ

|ε(σ)|
σ

dσ




2

− (log t)




∞∫

t

|ε(σ)|
σ

dσ




2

+ 2
τ∫

t

(log s)




∞∫

s

|ε(σ)|
σ

dσ


 |ε(s)|

s
ds.
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By (1.10) and (1.18), the first term of the right-hand side of the above equality tends
to 0 as τ → ∞, and the last term is convergent as τ → ∞. Therefore, (1.15) holds and

∞∫

t

1
s




∞∫

s

|ε(σ)|
σ

dσ




2

ds

= −(log t)




∞∫

t

|ε(σ)|
σ

dσ




2

+ 2
∞∫

t

(log s)




∞∫

s

|ε(σ)|
σ

dσ


 |ε(s)|

s
ds.

Consequently,

∞∫

t

1
s




∞∫

s

|ε(σ)|
σ

dσ




2

ds ≤ 2
∞∫

t

(log s)




∞∫

s

|ε(σ)|
σ

dσ


 |ε(s)|

s
ds

≤ 2M(t)
∞∫

t

|ε(s)|
s

ds,

where

M(t) = sup
s≥t



(log s)

∞∫

s

|ε(σ)|
σ

dσ



 .

Since M(t) → 0 as t → ∞, this implies (1.16).

Lemma 2.6. Let p be a constant such that p > 1. Suppose that f(t) is a continuous
function on [a, b], a > 1. Then we have

b∫

a

1
s(log s)p




s∫

a

1
σ

|f(σ)|dσ




p

ds ≤
(

p

p− 1

)p
b∫

a

1
s

|f(s)|pds. (2.10)

Proof. For the left-hand side of (2.10) we make the change of variable twice, first
log s = u, and next σ = ev. Then we have

b∫

a

1
s(log s)p




s∫

a

1
σ

|f(σ)|dσ




p

ds =
log b∫

log a

1
up




u∫

log a

|f(ev)|dv




p

du.

An application of the Hardy-type inequality which is proved in [11, Theorem 2.2]
yields

log b∫

log a

1
up




u∫

log a

|f(ev)|dv




p

du ≤
(

p

p− 1

)p
log b∫

log a

|f(eu)|pdu.

By the change of variable eu = s, the right-hand of the above inequality is equal to
the right-hand of (2.10). This proves the inequality (2.10).
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3. PROOFS OF THE RESULTS

Now, let us return to the half-linear equation (1.1). The number

λ = α

α+ 1 (3.1)

is a unique real root of the equation

|λ|α+1 − λα∗ + E(α) = 0,

where E(α) is defined by (1.5). In what follows, the letter λ is the number which is
given by (3.1). Further, in what follows, we suppose that (1.13) holds and define ε(t)
by (1.14). Since ε(t) → 0 (t → ∞), there is T > t0 such that |ε(t)| ≤ λα/4 for t ≥ T .

Let x(t) be a nonoscillatory solution of (1.1) which satisfies the condition (1.17).
We may suppose that x(t) > 0 for t ≥ T , and define the function y(t) by (1.24). As
mentioned in Section 1, the function y(t) satisfies (1.28).

Put
w(t) = tαy(t) − λα − ε(t), t ≥ T.

Noting that λα = λα+1 + E(α) and using the formula (1.28), we have

w(t) = −λα+1 + αtα
∞∫

t

|w(s) + λα + ε(s)|(α+1)/α

sα+1 ds, t ≥ T. (3.2)

Then it is easy to see that

w′(t) = α

t
w(t) + αλα+1

t
− α

t
|w(t) + λα + ε(t)|(α+1)/α, t ≥ T. (3.3)

We have λα + ε(t) ≥ 3λα/4 > 0 for t ≥ T . The above equality can be written as

w′(t) = −α

t

{
(λα + ε(t))(α+1)/α − λα+1

}

− α+ 1
t

{
(λα + ε(t))1/α − λ

}
w(t)

− α

t
F (w(t), ε(t)), t ≥ T,

where F (w, ε) is defined by (2.1) with λ = α/(α+ 1).
For simplicity of notation, we put

f1(t) = (λα + ε(t))(α+1)/α − λα+1, f2(t) = (λα + ε(t))1/α − λ, (3.4)

and so
w′(t) = −α

t
f1(t) − α+ 1

t
f2(t)w(t) − α

t
F (w(t), ε(t)), t ≥ T. (3.5)

Since ε(t) → 0 (t → ∞), it follows from (2.5) and (2.6) in Lemma 2.3 that

|f1(t)| ≤ 2α+ 1
α

λ|ε(t)|, |f2(t)| ≤ 2
α
λ−α+1|ε(t)| (3.6)

for all large t. Without loss of generality we assume that (3.6) holds for t ≥ T .
Under the above preparation, we prove Theorem 1.4.
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Proof of Theorem 1.4. Let λ > 0 be the number which is defined by (3.1). We take
T > t0 sufficiently large so that |ε(t)| ≤ λα/4 for t ≥ T . Define the functions f1(t)
and f2(t) by (3.4). We may suppose that (3.6) holds for t ≥ T . Put

η(t) =
∞∫

t

|ε(s)|
s

ds, t ≥ t0. (3.7)

By (1.10), the function η(t) is well-defined. Since η(t) → 0 (t → ∞), we can suppose
that

4(α+ 1)λη(t) ≤ λα/4, t ≥ T,

and
4(α+ 1)

α
λ−α+2η(t) ≤ λ, t ≥ T. (3.8)

The condition (1.16) is rewritten as

∞∫

t

η(s)2

s
ds = o (η(t)) as t → ∞.

Therefore we can suppose that
∞∫

t

η(s)2

s
ds ≤ (α+ 1)λ

16α(α+ 1)2K(α)λ−α+3 η(t) for t ≥ T, (3.9)

where K(α) is the positive constant appearing in Lemma 2.1.
Denote by W the set of all functions w ∈ C[T,∞) such that

|w(t)| ≤ 4(α+ 1)λη(t), t ≥ T. (3.10)

Moreover, keeping (3.5) in mind, we define the operator F : W → C[T,∞) by

(Fw)(t) = α

∞∫

t

f1(s)
s

ds+ (α+ 1)
∞∫

t

f2(s)
s

w(s)ds

+ α

∞∫

t

1
s
F (w(s), ε(s))ds, t ≥ T.

Here, F (w, ε) is given by (2.1) with λ = α/(α + 1). As is easily verified, the set W
is a nonempty closed convex subset of the Fréchet space C[T,∞) of all continuous
functions on [T,∞) with the topology of uniform convergence on compact subintervals
of [T,∞). Note that if w ∈ W , then |w(t)| ≤ λα/4 for t ≥ T , and so, by Lemma 2.1,

0 ≤ F (w(t), ε(t)) ≤ K(α)λ−α+1w(t)2, t ≥ T. (3.11)
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Then it can be easily checked that Fw is well-defined and continuous on [T,∞) for
w ∈ W .

Let w ∈ W . Then, by (3.6), (3.10) and (3.11), we have

|(Fw)(t)| ≤ 2(α+ 1)λ
∞∫

t

|ε(s)|
s

ds+ 8(α+ 1)2

α
λ−α+2

∞∫

t

|ε(s)|
s

η(s)ds

+ 16α(α+ 1)2K(α)λ−α+3
∞∫

t

η(s)2

s
ds, t ≥ T.

Note that the first and the second integrals in the right-hand side of the above
inequality are equal to η(t) and (1/2)η(t)2, respectively. Therefore, using (3.8) and
(3.9), we obtain

|(Fw)(t)| ≤ 2(α+ 1)λη(t) + (α+ 1)λη(t) + (α+ 1)λη(t)
= 4(α+ 1)λη(t), t ≥ T.

This shows that
(i) F maps W into W .

Moreover it can be checked that:
(ii) F is continuous on W ,
(iii) FW is uniformly bounded and equicontinuous at every point of [T,∞).

The Schauder–Tychonoff fixed point theorem implies that F has a fixed element
w ∈ W : w(t) = (Fw)(t), t ≥ T .

It is clear the above fixed element w(t) satisfies (3.3) and (3.10). Since η(t) → 0
(t → ∞), it follows from (3.10) that w(t) → 0 as t → ∞. In addition, it can be shown
without difficulty that w(t) satisfies (3.2) for t ≥ T . Put

y(t) = w(t) + λα + ε(t)
tα

, t ≥ T.

We find that y(t) satisfies (1.28), and hence it satisfies (1.25). Therefore, the function
x(t) which is defined by (1.26) is a positive solution of (1.1) on [T,∞). Furthermore,
we have

t
x′(t)
x(t) = (w(t) + λα + ε(t))(1/α)∗

, t ≥ T. (3.12)

Noting that ε(t) → 0 and w(t) → 0 (t → ∞) and using (2.6) in Lemma 2.3, we get
∣∣∣(w(t) + λα + ε(t))(1/α)∗ − λ

∣∣∣ ≤ 2
α
λ−α+1{|w(t)| + |ε(t)|} (3.13)

for all large t. The inequality (3.13) is not used at the present stage, but it is used for
the proofs of Theorem 1.6 (i = 1) and Theorem 1.7 (i = 1). It follows from (3.12) that

lim
t→∞

t
x′(t)
x(t) = λ. (3.14)

Since λ = α/(α+ 1), this implies (1.17). The proof of Theorem 1.4 is complete.
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In what follows, we will show that if the conditions (1.10), (1.18) and (1.19) hold,
then the solution x(t) which is obtained in the proof of Theorem 1.4 satisfies the
asymptotic condition of the form (1.20). Similarly, if the conditions (1.10) and (1.12)
hold, then the solution x(t) which is obtained in the proof of Theorem 1.4 satisfies
the asymptotic condition of the form (1.22). In other words, we prove Theorem 1.6
in the case i = 1 and Theorem 1.7 in the case i = 1 as a continuation of the proof of
Theorem 1.4.

Proof of Theorem 1.6 in the case i = 1. The proof is done as a continuation of the
proof of Theorem 1.4. Let x(t) be the solution of (1.1) which is obtained in the proof
of Theorem 1.4. We have (3.12) and (3.13). The function w(t) in (3.12) and (3.13)
is estimated as in (3.10). Here, λ and η(t) are given by (3.1) and (3.7), respectively.
Then, since

t
x′(t)
x(t) − λ = (w(t) + λα + ε(t))(1/α)∗ − λ, t ≥ T,

we have
(log t)

∣∣∣∣t
x′(t)
x(t) − λ

∣∣∣∣ ≤ 2
α
λ−α+1{(log t)|w(t)| + (log t)|ε(t)|} (3.15)

for all large t. By (3.7) and (3.10) we have

(log t)|w(t)| ≤ 4(α+ 1)λ(log t)
∞∫

t

|ε(s)|
s

ds, t ≥ T,

and so it follows from (1.18) that (log t)|w(t)| → 0 (t → ∞). Then, by this fact and
(1.19) and (3.15), we obtain (1.20) with x1(t) = x(t). The proof of Theorem 1.6 in the
case i = 1 is complete.

Proof of Theorem 1.7 in the case i = 1. Let x(t) be the solution of (1.1) which is
obtained in the proof of Theorem 1.4. We have (3.10) and (3.12)–(3.14). Since

x′(t)
x(t) = λ

t
+ (w(t) + λα + ε(t))(1/α)∗ − λ

t
, t ≥ T,

it is easily seen that

x(t) = x(T )
Tλ

exp




t∫

T

(w(s) + λα + ε(s))(1/α)∗ − λ

s
ds


 tλ, t ≥ T. (3.16)

The condition (1.12) implies
∞∫

T

η(t)
t
dt < ∞,

and so (3.10) gives
∞∫

T

|w(t)|
t

dt < ∞. (3.17)
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By (1.10), (3.13) and (3.17), the solution x(t) expressed as (3.16) can be written in
the form

x(t) = c0(t)tλ with c0(t) → c0 ∈ (0,∞) as t → ∞, (3.18)
and hence, by (3.14), the derivative x′(t) is presented as

x′(t) = c0(t)tx
′(t)
x(t) t

λ−1 = c1(t)tλ−1 with c1(t) → c0λ as t → ∞. (3.19)

In general, if x(t) is a solution of the half-linear equation (1.1) and if c is a constant,
then cx(t) is also a solution of (1.1). Therefore, without loss of generality, we may
suppose that c0 = 1 in (3.18) and (3.19). Since λ = α/(α+ 1), this shows (1.22) with
x1(t) = x(t). The proof of Theorem 1.7 in the case i = 1 is complete.

4. PROOFS OF THE RESULTS (CONTINUED)

Next, let us prove Theorem 1.6 in the case i = 2 and Theorem 1.7 in the case i = 2. As
before, the letter λ is the number defined by (3.1). We suppose that (1.13) holds and
define ε(t) by (1.14). Since ε(t) → 0 (t → ∞), there is T > t0 such that |ε(t)| ≤ λα/4
for t ≥ T . Further, we suppose that (1.10) and (1.18) hold. If (1.10) and (1.12) are
satisfied, then (1.18) holds (see (I) of Lemma 2.5).

Let x(t) be a nonoscillatory solution of (1.1) which satisfies the condition (1.17).
We suppose that x(t) > 0 for t ≥ T , and define the function y(t) by (1.24). The
function y(t) satisfies (1.28).

Put
v(t) = (log t)

[
tαy(t) − λα − ε(t)

]
− 2λα, t ≥ T.

Noting that λα = λα+1 + E(α) and using the formula (1.28), we obtain
v(t) = −2λα − λα+1 log t

+ αtα log t
∞∫

t

1
sα+1

∣∣∣∣
v(s) + 2λα

log s + λα + ε(s)
∣∣∣∣
(α+1)/α

ds
(4.1)

for t ≥ T . By differentiation of (4.1) we get

v′(t) =
(
α

t
+ 1
t log t

)
v(t) + 2αλα 1

t
+ 2λα 1

t log t

+ αλα+1 log t
t

− α
log t
t

∣∣∣∣
v(t) + 2λα

log t + λα + ε(t)
∣∣∣∣
(α+1)/α (4.2)

for t ≥ T . Therefore it can be shown that

((log t)v(t))′ =
(
α

log t
t

+ 2
t

)
v(t) + 2αλα log t

t
+ 2λα 1

t

+ αλα+1 (log t)2

t
− α

(log t)2

t

∣∣∣∣
v(t) + 2λα

log t + λα + ε(t)
∣∣∣∣
(α+1)/α

for t ≥ T .
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Recall that λ = α/(α+ 1). Then the above equality can be written as

((log t)v(t))′ = 2
t
v(t) − α+ 1

2α λ1−α 1
t
(v(t) + 2λα)2 + 2λα 1

t

− α
(log t)2

t
{(λα + ε(t))(α+1)/α − λα+1}

− (α+ 1) log t
t

{(λα + ε(t))1/α − λ}(v(t) + 2λα)

− α+ 1
2α

1
t
{(λα + ε(t))(1/α)−1 − λ1−α}(v(t) + 2λα)2

− α
(log t)2

t
G(t, v(t), ε(t)),

where G(t, v, ε) is given by (2.3) with λ = α/(α+ 1). For simplicity of notation, we
put




f1(t) = (λα + ε(t))(α+1)/α − λα+1, f2(t) = (λα + ε(t))1/α − λ,

f3(t) = (λα + ε(t))(1/α)−1 − λ1−α.
(4.3)

Then it is easily seen that

((log t)v(t))′ = −λ−α

2
1
t
v(t)2 − α

(log t)2

t
f1(t)

− (α+ 1) log t
t
f2(t)(v(t) + 2λα)

− α+ 1
2α

1
t
f3(t)(v(t) + 2λα)2 − α

(log t)2

t
G(t, v(t), ε(t)).

(4.4)

Since ε(t) → 0 (t → ∞), it follows from Lemma 2.3 that




|f1(t)| ≤ 2α+ 1
α

λ|ε(t)|, |f2(t)| ≤ 2
α
λ−α+1|ε(t)|,

|f3(t)| ≤ 2 |α− 1|
α

λ−2α+1|ε(t)|
(4.5)

for all large t.
We are now ready to prove Theorem 1.6 (i = 2) and Theorem 1.7 (i = 2).

Proof of Theorem 1.6 in the case i = 2. Let λ > 0 be the number which is defined
by (3.1). We take T > max{t0, e} sufficiently large so that |ε(t)| ≤ λα/4 for t ≥ T
(e is Napier’s constant). Define the functions f1(t), f2(t) and f3(t) by (4.3). We may
suppose that (4.5) holds for t ≥ T . Now, put

φ(t) = λα

4 + 1
(log t)1/2 + 9α

log t

t∫

t0

log s
s




∞∫

s

|ε(σ)|
σ

dσ


 ds, t ≥ t0.
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From the condition (1.18), we see that limφ(t) = λα/4 as t → ∞. Put
v0 = sup

t≥t0

φ(t),

which is a positive finite number. Taking the number T sufficiently large, we may
suppose that (2.2) in Lemma 2.2 holds. Define the function ψ(t;T ) by

ψ(t;T ) = λα

4
log T
log t + 1

(log t)1/2

+ 9α
log t

t∫

T

log s
s




∞∫

s

|ε(σ)|
σ

dσ


 ds, t ≥ T.

It is clear that
0 < ψ(t;T ) ≤ φ(t) ≤ v0 for t ≥ T.

Denote by V the set of all functions v ∈ C[T,∞) such that
|v(t)| ≤ ψ(t;T ), t ≥ T. (4.6)

Keeping in mind the above preparatory calculation, we define the operator
F : V → C[T,∞) by

(Fv)(t) = −λ−α

2
1

log t

t∫

T

1
s
v(s)2ds− α

log t

t∫

T

(log s)2

s
f1(s)ds

− α+ 1
log t

t∫

T

log s
s

f2(s)(v(s) + 2λα)ds

− α+ 1
2α

1
log t

t∫

T

1
s
f3(s)(v(s) + 2λα)2ds

− α

log t

t∫

T

(log s)2

s
G(s, v(s), ε(s))ds, t ≥ T.

(4.7)

Here, G(t, v, ε) is given by (2.3) with λ = α/(α+ 1). The set V is a nonempty closed
convex subset of the Fréchet space C[T,∞) of all continuous functions on [T,∞) with
the topology of uniform convergence on compact subintervals of [T,∞).

Denote the i-th term of the right-hand side of (4.7) by Ri(t), i = 1, 2, . . . , 5. Let
v ∈ V . Since (A+B + C)2 ≤ 4A2 + 4B2 + 4C2 for all A,B,C ∈ R, we have

t∫

T

1
s
v(s)2ds ≤ λ2α

4 (log T )2
t∫

T

1
s(log s)2 ds+ 4

t∫

T

1
s log sds

+ 4(9α)2
t∫

T

1
s(log s)2




s∫

T

log σ
σ




∞∫

σ

|ε(r)|
r

dr


 dσ




2

ds
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for t ≥ T . Denote by R1,3(t) the last term of the right-hand side of the above inequality.
To estimate R1,3(t), we use Lemma 2.6 of the case p = 2, a = T , b = t and

f(t) = (log t)
∞∫

t

|ε(r)|
r

dr.

Then we find that

|R1,3(t)| ≤ 42(9α)2
t∫

T

(log s)2

s




∞∫

s

|ε(σ)|
σ

dσ




2

ds

≤ 42(9α)2M(T )
t∫

T

log s
s




∞∫

s

|ε(σ)|
σ

dσ


 ds,

where

M(T ) = sup
s≥T



(log s)

∞∫

s

|ε(σ)|
σ

dσ



 . (4.8)

Therefore we have

|R1(t)| ≤ λα

8
log T
log t + 2λ−α log(log t)

log t

+ 8(9α)2λ−αM(T ) 1
log t

t∫

T

log s
s




∞∫

s

|ε(σ)|
σ

dσ


 ds

(4.9)

for t ≥ T . To estimate |R2(t)|, |R3(t)| and |R4(t)|, we use (4.5). We have

|R2(t)| ≤ 2α
log t

t∫

T

(log s)2

s
|ε(s)|ds (4.10)

for t ≥ T . It is clear that |v(t)| ≤ v0 for t ≥ T , and so |v(t) + 2λα| ≤ v0 + 2λα for
t ≥ T . Therefore we get

|R3(t)| ≤ 2(α+ 1)
α

λ−α+1(v0 + 2λα) 1
log t

t∫

T

log s
s

|ε(s)|ds (4.11)

and

|R4(t)| ≤ (α+ 1)|α− 1|
α2 λ−2α+1(v0 + 2λα)2 1

log t

t∫

T

1
s

|ε(s)|ds (4.12)

for t ≥ T . We may suppose that T is sufficiently large so that

2(α+ 1)
α

λ−α+1(v0 + 2λα) ≤ α log T
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and
(α+ 1)|α− 1|

α2 λ−2α+1(v0 + 2λα)2 ≤ α(log T )2.

Then it follows from (4.11) and (4.12) that

|R3(t)| ≤ α

log t

t∫

T

(log s)2

s
|ε(s)|ds (4.13)

and

|R4(t)| ≤ α

log t

t∫

T

(log s)2

s
|ε(s)|ds (4.14)

for t ≥ T . Therefore, by (4.10), (4.13) and (4.14), we get

|R2(t)| + |R3(t)| + |R4(t)|

≤ 4α
log t

t∫

T

(log s)2

s
|ε(s)|ds

≤ 4α (log T )2

log t

∞∫

T

|ε(σ)|
σ

dσ + 8α
log t

t∫

T

log s
s




∞∫

s

|ε(σ)|
σ

dσ


 ds

≤ 4αM(T ) log T
log t + 8α

log t

t∫

T

log s
s




∞∫

s

|ε(σ)|
σ

dσ


 ds (4.15)

for t ≥ T . Here, M(T ) is given by (4.8). Since |ε(t)| ≤ λα/4 and |v(t)| ≤ v0 for t ≥ T ,
it follows from Lemma 2.2 that

|G(t, v(t), ε(t))| ≤ L(α)λ−2α+1
∣∣∣∣
v(t) + 2λα

log t

∣∣∣∣
3
, t ≥ T.

Therefore

|R5(t)| ≤ αL(α)λ−2α+1(v0 + 2λα)3 1
log t

t∫

T

1
s log sds

≤ αL(α)λ−2α+1(v0 + 2λα)3 log(log t)
log t , t ≥ T. (4.16)
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Consequently, by (4.9), (4.15) and (4.16), it is found that

|(Fv)(t)| ≤
5∑

i=1
|Ri(t)|

≤
(
λα

8 + 4αM(T )
)

log T
log t

+
(
2λ−α + αL(α)λ−2α+1(v0 + 2λα)3) log(log t)

log t

+
(
8(9α)2λ−αM(T ) + 8α

) 1
log t

t∫

T

log s
s




∞∫

s

|ε(σ)|
σ

dσ


 ds

for t ≥ T . Since M(T ) → 0 as T → ∞, we may suppose that

4αM(T ) ≤ λα

8 and 8(9α)2λ−αM(T ) ≤ α.

Further, we may suppose that

(
2λ−α + αL(α)λ−2α+1(v0 + 2λα)3) log(log t)

log t ≤ 1
(log t)1/2 for t ≥ T.

Then we get
|(Fv)(t)| ≤ ψ(t;T ), t ≥ T.

This means that

(i) F maps V into V .

Moreover it can be checked that:

(ii) F is continuous on V ,
(iii) FV is uniformly bounded and equicontinuous at every point of [T,∞).

Therefore, by the Schauder–Tychonoff fixed point theorem, we conclude that F has
a fixed element v ∈ V : v(t) = (Fv)(t), t ≥ T .

It is clear that the above fixed element v(t) satisfies (4.4) and (4.6). Since
limψ(t;T ) = 0 as t → ∞, we have

lim
t→∞

v(t) = 0. (4.17)

Note also that |v(t)| ≤ v0 for t ≥ T . Moreover we can verify without difficulty that
v(t) satisfies (4.2) for t ≥ T , and, in consequence, v(t) satisfies (4.1) for t ≥ T . Put

y(t) = 1
tα

(
v(t) + 2λα

log t + λα + ε(t)
)
, t ≥ T.
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It is shown that y(t) satisfies (1.28), and hence it satisfies (1.25). Therefore, the function
x(t) which is defined by (1.26) is a positive solution of (1.1) on [T,∞). Furthermore
we have

tα
(
x′(t)
x(t)

)α∗
= tαy(t) = v(t) + 2λα

log t + λα + ε(t), t ≥ T,

and so

t
x′(t)
x(t) =

(
λα + v(t) + 2λα

log t + ε(t)
)(1/α)∗

, t ≥ T.

Consequently, by (2.8) in Lemma 2.4, the function tx′(t)/x(t) has the form

t
x′(t)
x(t) = λ+ λ−α+1

α

(
v(t) + 2λα

log t + ε(t)
)

+R(t) (4.18)

with
|R(t)| ≤ |α− 1|

α2 λ−2α+1
∣∣∣∣
v(t) + 2λα

log t + ε(t)
∣∣∣∣
2

(4.19)

for all large t.
It should be noticed that the condition (1.19) is not used in the arguments up to

now.
From (4.18) it follows that

(log t)
(
t
x′(t)
x(t) − λ

)
= 2λ

α
+ λ−α+1

α
(v(t) + (log t)ε(t)) + (log t)R(t)

for all large t. Then, by (1.19), (4.17) and (4.19), we can conclude that

lim
t→∞

(log t)
(
t
x′(t)
x(t) − λ

)
= 2λ

α
.

Since λ = α/(α+ 1), this gives (1.21) with x2(t) = x(t). The proof of Theorem 1.6 in
the case i = 2 is complete.

Proof of Theorem 1.7 in the case i = 2. Since (1.10) and (1.12) imply (1.18) (see (I)
of Lemma 2.5), almost all of the proof of Theorem 1.6 in the case i = 2 remain valid.
Let x(t) be the solution of (1.1) which is obtained in the proof of Theorem 1.6 in the
case i = 2. We have (4.18), (4.19) and (4.6). Use of (4.18) yields

x′(t)
x(t) = λ

t
+ 2λ

α

1
t log t + λ−α+1

α

(
v(t)
t log t + ε(t)

t

)
+ R(t)

t

for all large t. Then it is easily seen that

x(t) = x(T1)
Tλ

1 (log T1)2λ/α
exp


λ−α+1

α

t∫

T1

(
v(s)
s log s + ε(s)

s

)
ds




× exp




t∫

T1

R(s)
s

ds


 tλ(log t)2λ/α

(4.20)
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for t ≥ T1, where T1 is a constant and is taken sufficiently large. Recall that the
condition (1.10) is assumed. Note furthermore that the condition (1.12) implies

∞∫

T1

ψ(s;T )
s log s ds < ∞.

Then it follows from (4.6) that
∞∫

T1

|v(s)|
s log sds < ∞.

We find without difficulty that
∞∫

T1

|R(s)|
s

ds < ∞.

Then, by (4.20), it is shown that x(t) is written in the form

x(t) = c0(t)tλ(log t)2λ/α with c0(t) → c0 ∈ (0,∞) as t → ∞. (4.21)

It is clear that (4.18) and (4.19) give

lim
t→∞

t
x′(t)
x(t) = λ,

and so (4.21) implies



x′(t) = c0(t)tx

′(t)
x(t) t

λ−1(log t)2λ/α = c1(t)tλ−1(log t)2λ/α

with c1(t) → c0λ as t → ∞.
(4.22)

We may suppose that c0 = 1 in (4.21) and (4.22). Since λ = α/(α + 1), this shows
(1.23) with x2(t) = x(t). The proof of Theorem 1.7 in the case i = 2 is complete.

5. EXAMPLES

We now present some examples illustrating our main results.

Example 5.1. Consider the equation (1.1) with

q(t) = αE(α)
tα+1 + d

dt

{
1

tα(log t)2(log log t) + 1
tα(log t)2(log log t)2

}

for t ≥ e+ 1. We easily see that (1.3) and (1.13) are satisfied, and the function ε(t)
which is defined by (1.14) is calculated as follows:

ε(t) = − 1
(log t)2(log log t) − 1

(log t)2(log log t)2 , t ≥ e+ 1.
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Hence, the condition (1.10) is also satisfied and

∞∫

t

|ε(s)|
s

ds = 1
(log t)(log log t) , t ≥ e+ 1.

Then it is clear that (1.18) and (1.19) are satisfied. Therefore it follows from Theo-
rem 1.6 that (1.1) has a nonoscillatory solution x1(t) satisfying (1.20) and a nonoscil-
latory solution x2(t) satisfying (1.21).

It should be noticed that this q(t) does not satisfy the condition (1.12), and so
Theorem 1.3 does not work.

Example 5.2. Let ω(t) be a continuously differentiable function on [t0,∞), t0 > 1,
such that ω(t) ≥ 0 for t ≥ t0 and

∞∫

t0

ω(t)dt < ∞ and lim
t→∞

tω(t)
log t = 0. (5.1)

Then, consider the equation (1.1) with

q(t) = αE(α)
tα+1 − d

dt





tω(t)
tα log t + 1

tα(log t)2

∞∫

t

ω(s)ds



 , t ≥ t0.

It is easy to see that (1.3) and (1.13) are satisfied and the function ε(t) defined by
(1.14) is

ε(t) = tω(t)
log t + 1

(log t)2

∞∫

t

ω(s)ds.

Therefore it is shown without difficulty that (1.10) is satisfied and

∞∫

t

|ε(s)|
s

ds = 1
log t

∞∫

t

ω(s)ds.

Hence, (1.18) holds. By Corollary 1.5 we deduce that (1.1) has a nonoscillatory solution
x(t) satisfying (1.17).

If ω(t) satisfies the condition

lim
t→∞

tω(t) = 0, (5.2)

which is stronger than the latter half of (5.1), then (1.19) also holds. Therefore, by
Theorem 1.6, we conclude that (1.1) has a nonoscillatory solution x1(t) satisfying
(1.20) and a nonoscillatory solution x2(t) satisfying (1.21).
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If ω(t) satisfies the condition
∞∫

t0

1
t log t




∞∫

t

ω(s)ds


 dt < ∞, (5.3)

then (1.12) holds, and, by Theorem 1.7, the equation (1.1) has a nonoscillatory solution
x1(t) satisfying (1.22) and a nonoscillatory solution x2(t) satisfying (1.23).

For example, the function ω(t) behaving like

ω(t) ∼ 1
t(log t)(log log t)2 (t → ∞)

satisfies both (5.1) and (5.2), while it does not satisfy (5.3). The function w(t) behaving
like

ω(t) ∼ 1
t(log t)(log log t)3 (t → ∞)

satisfies all of the conditions (5.1), (5.2) and (5.3).
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