Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Semantic segmentation of plant images is crucial for various agricultural applications and creates the need to develop more demanding models that are capable of handling images in a diverse range of conditions. This paper introduces an extended DeepLabV3+ model with a channel-wise attention mechanism, designed to provide precise semantic segmentation while emphasizing crucial features. It leverages semantic information with global context and is capable of handling object scale variations within the image. The proposed approach aims to provide a well generalized model that may be adapted to various field conditions by training and tests performed on multiple datasets, including Eschikon wheat segmentation (EWS), humans in the loop (HIL), computer vision problems in plant phenotyping (CVPPP), and a custom “botanic mixed set” dataset. Incorporating an ensemble training paradigm, the proposed architecture achieved an intersection over union (IoU) score of 0.846, 0.665 and 0.975 onEWS, HIL plant segmentation, and CVPPP datasets, respectively. The trained model exhibited robustness to variations in lighting, backgrounds, and subject angles, showcasing its adaptability to real-world applications.
Słowa kluczowe
Rocznik
Tom
Strony
56--66
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
- VIT-Bhopal University, Madhya Pradesh, India
autor
- Panjab University, Chandigarh, India
autor
- Panjab University, Chandigarh, India
autor
- Panjab University, Chandigarh, India
Bibliografia
- [1] M.A. Castillo-Martinez et al., “Color Index Based Thresholding Method for Background and Foreground Segmentation of Plant Images”, Computers and Electronics in Agriculture, vol. 178, 2020 (https://doi.org/10.1016/j.compag.2020.105783).
- [2] D. Riehle, D. Reiser, and H.W. Griepentrog, “Robust Index-based Semantic Plant/background Segmentation for RGB-images”, Computers and Electronics in Agriculture, vol. 169, 2020 (https://doi.org/10.1016/j.compag.2019.105201).
- [3] D.M. Woebbecke, G.E. Meyer, K.V. Bargen, and D.A. Mortensen, “Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions”, Transactions of the ASAE, vol. 38, pp. 259–269, 1995 (https://doi.org/10.13031/2013.27838).
- [4] E.R. Hunt et al., “Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status”, Precision Agriculture, vol. 6, pp. 359–378, 2005 (https://doi.org/10.1007/s11119-005-2324-5).
- [5] D. Zhang et al., “A Universal Estimation Model of Fractional Vegetation Cover for Different Crops Based on Time Series Digital Photographs”, Computers and Electronics in Agriculture, vol. 151, pp. 93–103, 2018 (https://doi.org/10.1016/j.compag.2018.05.030).
- [6] J. Singh and H. Kaur, “Plant Disease Detection Based on Regionbased Segmentation and KNN Classifier”, Proc. of the International Conference on ISMAC in Computational Vision and Bio-Engineering, pp. 1667–1675, 2018 (https://doi.org/10.1007/978-3-030-00665-5_154).
- [7] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 640–651, 2017 (https://doi.org/10.1109/TPAMI.2016.2572683).
- [8] L.G. Divyanth, A. Ahmad, and D. Saraswat, “A Two-stage Deeplearning Based Segmentation Model for Crop Disease Quantification Based on Corn Field Imagery”, Smart Agricultural Technology, vol. 3, 2023 (https://doi.org/10.1016/j.atech.2022.100108).
- [9] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, Lecture Notes in Computer Science, vol. 9351, pp. 234–241, 2015 (https://doi.org/10.1007/978-3-319-24574-4_28).
- [10] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional Encoder-decoder Architecture for Image Segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 2481–2495, 2017 (https://doi.org/10.1109/TPAMI.2016.2644615).
- [11] L.-C. Chen et al., “Encoder-decoder with Atrous Separable Convolution for Semantic Image Segmentation”, Computer Vision – ECCV, vol. 11211, pp. 833–851, 2018 (https://doi.org/10.1007/978-3-030-01234-2_49).
- [12] D. Ward, P. Moghadam, and N. Hudson, “Deep Leaf Segmentation Using Synthetic Data”, ArXiv, 2018 (https://doi.org/10.48550 arXiv.1807.10931).
- [13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016 (https://doi.org/10.1109/CVPR.2016.90).
- [14] T.-Y. Lin et al., “Feature Pyramid Networks for Object Detection”, ArXiv, 2017 (https://doi.org/10.48550/arXiv.1612.03144).
- [15] M. Minervini, A. Fischbach, H. Scharr, and S.A. Tsaftaris, “Finelygrained Annotated Datasets for Image-based Plant Phenotyping”, Pattern Recognition Letters, vol. 81, pp. 80–89, 2016 (https://doi.org/10.1016/j.patrec.2015.10.013).
- [16] M. Trivedi and A. Gupta, “Automatic Monitoring of the Growth of Plants Using Deep Learning-based Leaf Segmentation”, International Journal of Applied Science and Engineering, vol. 18, 2021 (https://doi.org/10.6703/IJASE.202106_18(2).003).
- [17] J. Fuentes-Pacheco et al., “Fig Plant Segmentation from Aerial Images Using a Deep Convolutional Encoder-decoder Network”, Remote Sensing, vol. 11, 2019 (https://doi.org/10.3390/rs11101157).
- [18] S. Sharma, K. Verma, and P. Hardaha, “Implementation of Artificial Intelligence in Agriculture”, Journal of Computational and Cognitive Engineering, vol. 2, pp. 155–162, 2023 (https://doi.org/10.47852/bonviewJCCE2202174).
- [19] M.K. Surehli, N. Aggarwal, and G. Joshi, “Botanic Mixed Set”, GitHub, 2023 (https://github.com/mukund-ks/botanic-mixed-set.git).
- [20] J. Hu, L. Shen, G. Sun, “Squeeze-and-Excitation Networks”, IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018 (https://doi.org/10.1109/CVPR.2018.00745).
- [21] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions”, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1251–1258, 2017 (https://doi.org/10.1109/CVPR.2017.195).
- [22] J. Deng et al., “ImageNet: A Large-scale Hierarchical Image Database”, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009 (https://doi.org/10.1109/CVPR.2009.5206848).
- [23] R. Zenkl et al., “Outdoor Plant Segmentation with Deep Learning for High-throughput Field Phenotyping on a Diverse Wheat Dataset”, Frontiers in Plant Science, vol. 12, 2022 (https://doi.org/10.3389/fpls.2021.774068).
- [24] Humans in the Loop, “Plant Segmentation Dataset”,(https://humansintheloop.org/resources/datasets/plant-segmentation).
- [25] E. Pereira, G. Carneiro, and F.R. Cordeiro, “A Study on the Impact of Data Augmentation for Training Convolutional Neural Networks in the Presence of Noisy Labels”, 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Natal, Brazil, 2022 (https://doi.org/10.1109/SIBGRAPI55357.2022.9991791).
- [26] M. Rico-Fernandez et al., “A Contextualized Approach for Segmentation of Foliage in Different Crop Species”, Computers and Electronics in Agriculture, vol. 156, pp. 378–386, 2019 (https: //doi.org/10.1016/j.compag.2018.11.033).
- [27] K. Yu et al., “An Image Analysis Pipeline for Automated Classification of Imaging Light Conditions and for Quantification of Wheat Canopy Cover Time Series in Field Phenotyping”, Plant Methods, vol. 13,2017 (https://doi.org/10.1186/s13007-017-0168-4).
- [28] E. David et al., “Global Wheat Head Detection (GWHD) Dataset: A Large and Diverse Dataset of High-resolution RGB-labelled Images to Develop and Benchmark Wheat Head Detection Methods”, Plant Phenomics, 2020 (https://doi.org/10.34133/2020/3521852).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53b0a9f4-f159-4c52-b6b4-1ac8ffe7fb5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.