PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Convergence technology for vehicle part surface finishing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of this research is convergence technology for the surface finishing of vehicle parts. A literature review has been conducted to carry out a comparative analysis of existing methods for the surface finishing of parts used in the manufacturing of aircraft, hydraulic and pneumatic devices, and other vehicles. Prospects are shown for further research on methods with the aim of creating a complex technology (i.e., convergence) that combines information technologies; nanotechnologies; and thermochemical, electrochemical, and mechanical processing methods. A method is proposed for selecting and combining surface finishing methods according to a five-point expert assessment, which allows the batch processing of vehicle parts. Based on this method, the concept of convergence technology for the surface finishing of vehicle parts is proposed, which includes the impulse thermal energy method, honing, superfinishing, and electrochemical processing. An expanded process is presented for manufacturing parts with high-precision, low-roughness surfaces and a specified microrelief by using electrochemical superfinishing and electrochemical honing. A scheme of the concentration (focusing) of the current flow during electrochemical superfinishing due to the movement of the electrode relative to the part surface is proposed, which enables the effect of surface polishing and the removal of oxidation products. Convergence technology for the surface finishing of vehicle parts will provide parts’ geometric dimensions with micro- and nano-precision and allow the precision machining of small-diameter holes and complex profiles, increased machining accuracy (up to 0.001 microns), the possibility of batch processing, and the possibility of process automation.
Czasopismo
Rocznik
Strony
117--127
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • National Aerospace University “Kharkiv Aviation Institute”; Chkalova 17, 61000 Kharkiv, Ukraine
  • National Aerospace University “Kharkiv Aviation Institute”; Chkalova 17, 61000 Kharkiv, Ukraine
  • National Aerospace University “Kharkiv Aviation Institute”; Chkalova 17, 61000 Kharkiv, Ukraine
  • National Aerospace University “Kharkiv Aviation Institute”; Chkalova 17, 61000 Kharkiv, Ukraine
  • National Aerospace University “Kharkiv Aviation Institute”; Chkalova 17, 61000 Kharkiv, Ukraine
Bibliografia
  • 1. Gupta, K. & Gupta, M.K. Developments in nonconventional machining for sustainable production: A state-of-the-art review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019. Vol. 233. No. 12. P. 4213-4232. DOI: 10.1177/0954406218811982.
  • 2. Khorasani, A.M. & Yazdi, M.R.S. & Safizadeh, M.S. Analysis of machining parameters effects on surface roughness: a review. International Journal of Computational Materials Science and Surface Engineering. 2012. Vol. 5. No. 1. P. 68-84.
  • 3. Gillespie, L.K. Deburring and Edge Finishing Handbook. Dearborn: Society of Manufacturing Engineers. 1999. 404 p. 4. Unune, D.R. & Mali, H.S. Current status and applications of hybrid micro-machining processes: a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2015. Vol. 229. No. 10. P. 1681-1693. DOI: 10.1177/0954405414546141.
  • 5. Yuan, J. & Lyu, B. & Hang, W. & Deng, Q. Review on the progress of ultra-precision machining technologies. Frontiers of Mechanical Engineering. 2017. Vol. 12. No. 2. P. 158-180. DOI: 10.1007/s11465-017-0455-9.
  • 6. XEBEC Deburring Technologies: Innovative Deburring & Surface Finishing Solutions. XEBEC. 2019. Available at: https://deburringtechnologies.com/literature/XEB-CAT19-digital.pdf.
  • 7. Rodríguez, A. & González, M. & Pereira, O. & et al. Edge finishing of large turbine casings using defined multi-edge and abrasive tools in automated cells. The International Journal of Advanced Manufacturing Technology. 2021. P. 1-11. DOI: 10.1007/s00170-021-08087-y.
  • 8. Matuszak, J. Comparative analysis of the effect of machining with wire and ceramic brushes on selected properties of the surface layer of EN AW-7075 aluminium alloy. Advances in Science and Technology. Research Journal. 2022. Vol. 16. No. 2. P. 50-56. DOI: 10.12913/22998624/146211.
  • 9. Maiorova, K. & Vorobiov, I. & Andreev, O. & et al. Forming the geometric accuracy and roughness of holes when drilling aircraft structures made from polymeric composite materials. Eastern-European Journal of Enterprise Technologies. 2022. No. 2(116). P. 71-80. DOI: https://doi.org/10.15587/1729-4061.2022.254555.
  • 10. Devin, L.N. & Grechuk, A.I. & Lupkin, B.V. Drilling of composites using tools of polycrystalline superhard materials. Journal of Superhard Materials. 2018. Vol. 40. No. 1. P. 58-64. DOI: 10.3103/S1063457618010094.
  • 11. Bhattacharyya, B. & Doloi, B. Advanced finishing processes. In: Modern Machining Technology. London: Academic Press, 2020. P. 675-743. DOI: 10.1016/B978-0-12-812894-7.00008-6.
  • 12. Niknam, S.A. & Davoodi, B. & Davim, J.P. & Songmene, V. Mechanical deburring and edge-finishing processes for aluminum parts – a review. The International Journal of Advanced Manufacturing Technology. 2018. Vol. 95. No. 1. P. 1101-1125. DOI: 10.1007/s00170-017-1288- 8.
  • 13. Kritskiy, D. & Pohudina, O. & Kovalevskyi, M. & Tsegelnyk, Y. & Kombarov, V. Powder mixtures analysis for laser cladding using OpenCV library. In: Nechyporuk, M. & Pavlikov, V. & Kritskiy, D. (eds.). Integrated Computer Technologies in Mechanical Engineering - 2022. Lecture Notes in Networks and Systems. 2022. Vol. 367. P. 924-937. DOI: 10.1007/978-3-030-94259- 5_72. Cham: Springer.
  • 14. Jin, S.Y. & Pramanik, A. & Basak, A.K. & et al. Burr formation and its treatments – a review. The International Journal of Advanced Manufacturing Technology. 2020. Vol. 107. No. 5. P. 2189- 2210. DOI: 10.1007/s00170-020-05203-2.
  • 15. Bańkowski, D. & Krajcarz, D. & Młynarczyk, P. Deburring and smoothing the edges using vibro-abrasive machining. Procedia Engineering. 2017. Vol. 192. P. 28-33. DOI: 10.1016/j.proeng.2017.06.005
  • 16. Levchenko, I. & Xu, S. & Cherkun, O. & Baranov, O. & Bazaka, K. Plasma meets metamatertials: three ways to advance space micropropulsion systems. Advances in Physics. 2021. Vol. 6. No. 1. Available at: https://www.tandfonline.com/doi/full/10.1080/23746149.2020.1834452.
  • 17. Plankovskyy, S. & Breus, V. & Voronko, V. & et al. Review of methods for obtaining hardening coatings. In: Nechyporuk, M. & Pavlikov, V. & Kritskiy, D. (eds.). Integrated Computer Technologies in Mechanical Engineering - 2020. Lecture Notes in Networks and Systems. 2021. Vol. 188. P. 332-343. Cham: Springer. DOI: 10.1007/978-3-030-66717-7_28.
  • 18. Kumar, M. & Bajpai, V. Experimental investigation of top burr formation in high-speed micro-milling of Ti6Al4V alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2020. Vol. 234. No. 4. P. 730-738. DOI: 10.1177/0954405419883049.
  • 19. Castillo, V.R. & Sánchez-González, L. & Fernández-Robles, L. & Castejón-Limas, M. Burr detection using image processing in milling workpieces. In: Herrero, Á. & Cambra, C. & Urda, D., & et al. (eds.). 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). Advances in Intelligent Systems and Computing. 2021. Vol. 1268. P. 751-759. Cham: Springer. DOI: 10.1007/978-3-030-57802-2_72.
  • 20. Abele, E. & Schützer, K. & Güth, S. & Meinhard, A. Deburring of cross-drilled holes with ball-end cutters – modeling the tool path. Production Engineering. 2018. Vol. 12. No. 1. P. 25-33. DOI: 10.1007/s11740-017-0781-0.
  • 21. Plankovskyy, S. & Popov, V. & Shypul, O. & et al. Advanced thermal energy method for finishing precision parts. In: Gupta, K. & Pramanik, A. (eds.). Advanced Machining and Finishing. 2021. P. 527-575. Amsterdam: Elsevier. DOI: 10.1016/B978-0-12-817452-4.00014-2.
  • 22. Karlina, Y.I. & Kargapoltsev, S.K. & Gozbenko, V.E. & et al. Overview of electro physicochemical methods for deburring small-sized high-precision details of coaxial radio components. Journal of Physics: Conference Series. 2020. Vol. 1582. No. 1. P. 1-7. DOI: 10.1088/1742-6596/1582/1/012041.
  • 23. Losev, A. & Bychkov, I. & Selezneva, A. & Shendryk, V. & Shendryk, S. Cleaning of Parts with Detonating Gas Mixtures. In: Tonkonogyi, V. & Ivanov, V. & Trojanowska, J. & Oborskyi, G. & Pavlenko, I. (eds). Advanced Manufacturing Processes III. Lecture Notes in Mechanical Engineering. 2022. P. 602-612. Cham: Springer. DOI: https://doi.org/10.1007/978-3-030-91327- 4_58.
  • 24. Ruszaj, A. & Gawlik, J. & Skoczypiec, S. Electrochemical machining – special equipment and applications in aircraft industry. Management and Production Engineering Review. 2016. Vol. 7. No. 2. P. 34-41. DOI: 10.1515/mper-2016-0015.
  • 25. Misra, J.P. & Jain, P.K. & Dwivedi, D.K. Electrochemical honing – a novel technique for gear finishing. In: Katalinic, B. (ed.). DAAAM International Scientific Book. 2011. P. 365-383. Vienna: DAAAM International. DOI: 10.2507/daaam.scibook.2011.29.
  • 26. Voronko, V. & Tkachenko, I. & Dyachenko, Y. & et al. Methodology for calculating the productivity of electrochemical machining in stationary electrolyte. In: Nechyporuk, M. & Pavlikov, V. & Kritskiy, D. (eds.). Integrated Computer Technologies in Mechanical Engineering - 2021. Lecture Notes in Networks and Systems. 2022. Vol. 367. P. 47-56. Cham: Springer. DOI: 10.1007/978-3-030-94259-5_5.
  • 27. Zhang, Y. & Xu, Z. & Xing, J. & Zhu, D. Effect of tube-electrode inner diameter on electrochemical discharge machining of nickel-based superalloy. Chinese Journal of Aeronautics. 2016. Vol. 29. No. 4. P. 1103-1110. DOI: 10.1016/j.cja.2015.12.016.
  • 28. Kar, S. & Patowari, P.K. Electrode wear phenomenon and its compensation in micro electrical discharge milling: a review. Materials and Manufacturing Processes. 2018. Vol. 33. No. 14. P. 1491-1517. DOI: 10.1080/10426914.2018.1453144.
  • 29. Choi, S.H. & Kong, K.J. & Cho, Y.T. Development of superfinishing machine to polish the inner surfaces of aircraft hydraulic oil reservoirs. Journal of the Korean Society of Manufacturing Process Engineers. 2020. Vol. 19. No. 8. P. 110-116. DOI: 10.14775/ksmpe.2020.19.08.110.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53afb4af-b50b-45e2-9a59-aa99af0dd39b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.