PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Hybrid MPSI-Extended AROMAN Decision-making Model for Assessing Green Logistics Performance: The Case of Asia-Pacific Countries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: This study examines the green logistics performance of Asia-Pacific countries (Australia, Bangladesh, Cambodia, China, India, Indonesia, Japan, Laos, Malaysia, New Zealand, Papua New Guinea, Philippines, Singapore, South Korea, Sri Lanka, Taiwan, Thailand and Vietnam) using nine criteria: climate change, environmental health, ecosystem vitality, customs, infrastructure, international shipments, logistics competences and quality, timeliness, and tracking and tracing. The criteria were determined based on a literature review. Data were obtained from Logistics Performance Index (LPI) and Environmental Performance Index (EPI) reports. Methods: This study combines the Modified Preference Selection Index (MPSI) and the Extended Alternative Ranking Order Method Accounting for the Two-Step Normalization (AROMAN) model to assess the green logistics performance of Asia-Pacific countries. The criteria weights were calculated using the MPSI method, while countries' green logistics performance was evaluated using the Extended AROMAN method. Results: The MPSI results show that environmental health, climate change, and infrastructure are the most important criteria, while tracking and tracing, international shipments, and timeliness are the least important. The Extended AROMAN results show that Japan, Australia, Singapore, New Zealand, and South Korea have the highest green logistics performance. In contrast, Indonesia, Vietnam, Bangladesh, Cambodia, and Laos have the lowest green logistics performance. Sensitivity and comparative analysis were conducted to assess the robustness of the results. Conclusion: This study presents a decision support system tailored to help the private sector, policymakers, and various stakeholders assess and improve nations' logistics performance, with a strong emphasis on green logistics. This model is a vital tool for analyzing key logistics metrics, promoting sustainable practices, and enabling informed decision-making to advance environmental responsibility and efficiency within logistics operations.
Słowa kluczowe
Czasopismo
Rocznik
Strony
84--105
Opis fizyczny
Bibliogr. 54 poz., tab.
Twórcy
  • Faculty of Economics and Administrative Sciences, Department of International Trade and Logistics, Cag University, Tarsus-Mersin, Türkiye
Bibliografia
  • 1. Akandere, G. (2021). Kuşak Yol Ülkelerinin Lojistik ve Çevresel Performansının Analizi. Gaziantep University Journal of Social Sciences, 20(4), 1893-1915. https://doi.org/10.21547/jss.927509
  • 2. Alnıpak, S. (2024). AHS-CoCoSo Yöntemi ile APEC Ülkelerinin Lojistik Performanslarının Değerlendirilmesi. Tarsus Üniversitesi Uygulamalı Bilimler Fakültesi Dergisi, 4(1), 13-26.
  • 3. Altıntaş, F. F. (2021). Avrupa Birliği Ülkelerinin Lojistik Performanslarının CRITIC Tabanlı WASPAS ve COPRAS Teknikleri İle Analizi. Türkiye Sosyal Araştırmalar Dergisi, 25(1), 117-146.
  • 4. Arikan Kargı, V. S. (2022). Evaluation of Logistics Performance of The OECD Member Countries with Integrated Entropy and WASPAS Method. Journal of Management & Economics/Yönetim ve Ekonomi, 29(4). https://doi.org/10.18657/yonveek.1067480
  • 5. Arvis, J. F., Ojala, L., Shepherd, B., Ulybina, D., & Wiederer, C. (2023). Connecting to compete 2023: trade logistics in an uncertain global economy. Logistics Performance Index Indicators. Washington DC: The World Bank. https://doi.org/10.1596/39760
  • 6. Block, S., Emerson, J. W., Esty, D. C., de Sherbinin, A., Wendling, Z. A., et al. (2024). 2024 Environmental Performance Index. New Haven, CT: Yale Center for Environmental Law & Policy. epi.yale.edu
  • 7. Bošković, S., Švadlenka, L., Dobrodolac, M., Jovčić, S., & Zanne, M. (2023b). An extended AROMAN method for cargo bike delivery concept selection. Decision Making Advances, 1(1), 1-9. https://doi.org/10.31181/v120231
  • 8. Bošković, S., Švadlenka, L., Jovčić, S., Dobrodolac, M., Simić, V., & Bacanin, N. (2023a). An alternative ranking order method accounting for two-step normalization (AROMAN)—A case study of the electric vehicle selection problem. IEEE Access, 11, 39496-39507. https://doi.org/10.1109/ACCESS.2023.3265818
  • 9. Bugarčić, F. Ž., Skvarciany, V., & Stanišić, N. (2020). Logistics performance index in international trade: case of Central and Eastern European and Western Balkans countries. Business: Theory and Practice, 21(2), 452-459. ttps://doi.org/10.3846/btp.2020.12802
  • 10. Çakır, S. (2017). Measuring logistics performance of OECD countries via fuzzy linear regression. Journal of Multi‐Criteria Decision Analysis, 24(3-4), 177-186. https://doi.org/10.1002/mcda.1601
  • 11. Çıray, D., Özdemir, Ü., & Mete, S. (2024). An Evaluation of the logistics Performance Index Using the ENTROPY-based ORESTE Method. Journal of Transportation and Logistics, 9(1), 68-82. https://doi.org/10.26650/JTL.2024.1437070
  • 12. De Souza, E. D., Kerber, J. C., Bouzon, M., & Rodriguez, C. M. T. (2022). Performance evaluation of green logistics: Paving the way towards circular economy. Cleaner Logistics and Supply Chain, 3, 100019. https://doi.org/10.1016/j.clscn.2021.100019
  • 13. Ecemiş, O., & Avşar, İ. İ. (2023). Türkiye’nin Önde Gelen Ticaret Ortaklarının Lojistik Verimliliklerinin Çok Kriterli Karar Verme Yöntemiyle Değerlendirilmesi. Kastamonu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 25(1), 142-163. https://doi.org/10.21180/iibfdkastamonu.1192728
  • 14. El-Nakib, I., & Elzarka, S. (2014). Measuring supply chain efficiency in MENA countries: A green perspective. Proceeding of theLimcharoen, A., Jangkrajarng, V., Wisittipanich, W., & Ramingwong, S.(2017). Thailand logistics trend: Logistics performance index. International Journal of Applied Engineering Research, 12(15), 4882-4885. https://doi.org/10.13140/RG.2.1.4888.5608
  • 15. ESCAP, U. (2019). Review of sustainable transport connectivity in Asia and the Pacific 2019: Addressing the challenges for freight transport. Retrieved from: https://www.un.org/ohrlls/sites/www.un.org.ohrlls/files/lldcs_publications/review-of-sustainable-transportation.pdf (13.11.2024).
  • 16. Fan, M., Wu, Z., Qalati, S. A., He, D., & Hussain, R. Y. (2022). Impact of green logistics performance on China’s export trade to regional comprehensive economic partnership countries. Frontiers in Environmental Science, 10, 879590. https://doi.org/10.3389/fenvs.2022.879590
  • 17. Gligorić, M., Gligorić, Z., Lutovac, S., Negovanović, M., & Langović, Z. (2022). Novel hybrid MPSI–MARA decision-making model for support system selection in an underground mine. Systems, 10(6), 248. https://doi.org/10.3390/systems10060248
  • 18. Gök Kısa, C. & Ayçin, E. (2019). OECD ülkelerinin lojistik performanslarının SWARA tabanlı EDAS yöntemi ile değerlendirilmesi. Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(1), 301-325. https://doi.org/10.18074/ckuiibfd.500320
  • 19. Hadzikadunic, A., Stevic, Z., Badi, I., & Roso, V. (2023). Evaluating the logistics performance index of European Union Countries: An integrated multi-criteria decision-making approach utilizing the Bonferroni Operator. Int. J. Knowl. Innov. Stud, 1(1), 44-59. https://doi.org/10.56578/ijkis010104
  • 20. Işık, Ö., Shabir, M., & Moslem, S. (2024). A Hybrid MCDM Framework for Assessing Urban Competitiveness: A Case Study of European Cities. Socio-Economic Planning Sciences, 102109. https://doi.org/10.1016/j.seps.2024.102109
  • 21. ISO. (2023). Towards a net-zero logistics sector. Retrieved from: https://www.iso.org/contents/news/2023/01/a-net-zero-logistics-sector.html (12.11.2024).
  • 22. Ju, C., Liu, H., Xu, A., & Zhang, J. (2023). Green logistics of fossil fuels and E-commerce: Implications for sustainable economic development. Resources Policy, 85, 103991. https://doi.org/10.1016/j.resourpol.2023.103991
  • 23. Kale, M. V., & Tilki, İ. (2024). Dünya Ülkelerinin Lojistik Performanslarının Çok Kriterli Karar Verme Yöntemi ile Değerlendirilmesi: 2023 Yılı Dünya Bankası Raporu ile Karşılaştırmalı Analizi. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (80), 13-30. https://doi.org/10.51290/dpusbe.1387317
  • 24. Kara, K., Bentyn, Z., & Yalçın, G. C. (2022). Determining the logistics market performance of developing countries by entropy and MABAC methods. LogForum, 18(4). https://doi.org/10.17270/j.log.2022.752
  • 25. Karaduman, H. A., Karaman-Akgül, A., Çağlar, M., & Akbaş, H. E. (2020). The relationship between logistics performance and carbon emissions: an empirical investigation on Balkan countries. International Journal of Climate Change Strategies and Management, 12(4), 449-461. https://doi.org/10.1108/IJCCSM-05-2020-0041
  • 26. Karaman, A. S., Kilic, M., & Uyar, A. (2020). Green logistics performance and sustainability reporting practices of the logistics sector: The moderating effect of corporate governance. Journal of Cleaner Production, 258, 120718. https://doi.org/10.1016/j.jclepro.2020.120718
  • 27. Khan, S. A. R., Qianli, D., SongBo, W., Zaman, K., & Zhang, Y. (2017). Environmental logistics performance indicators affecting per capita income and sectoral growth: evidence from a panel of selected global ranked logistics countries. Environmental science and pollution research, 24, 1518-1531. https://doi.org/10.1007/s11356-016-7916-2
  • 28. Kim, I. and Min, H. (2011), Measuring supply chain efficiency from a green perspective. Management Research Review, 34(11), 1169-1189. https://doi.org/10.1108/01409171111178738
  • 29. Lu, M., Xie, R., Chen, P., Zou, Y., & Tang, J. (2019). Green transportation and logistics performance: An improved composite index. Sustainability, 11(10), 2976. https://doi.org/10.3390/su11102976
  • 30. Maji, I. K., Saudi, N. S. M., & Yusuf, M. (2023). An assessment of green logistics and environmental sustainability: Evidence from Bauchi. Cleaner Logistics and Supply Chain, 6, 100097. https://doi.org/10.1016/j.clscn.2023.100097
  • 31. Martí, L., Puertas, R., & García, L. (2014). The importance of the Logistics Performance Index in international trade. Applied economics, 46(24), 2982-2992. https://doi.org/10.1080/00036846.2014.916394
  • 32. Mešić, A., Miškić, S., Stević, Ž., & Mastilo, Z. (2022). Hybrid MCDM solutions for evaluation of the logistics performance index of the Western Balkan countries. Economics, 10(1), 13-34. https://doi.org/10.2478/eoik-2022-0004
  • 33. Miškić, S., Stević, Ž., Tadić, S., Alkhayyat, A., & Krstić, M. (2023). Assessment of the LPI of the EU countries using MCDM model with an emphasis on the importance of criteria. World Review of Intermodal Transportation Research, 11(3), 258-279. https://doi.org/10.1504/WRITR.2023.132501
  • 34. Orhan, M. (2019). Türkiye ile Avrupa Birliği ülkelerinin lojistik performanslarının Entropi ağırlıklı EDAS yöntemiyle karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi, (17), 1222-1238. https://doi.org/10.31590/ejosat.657693
  • 35. Özbek, H. E., & Özekenci, E. K. (2023). Investigation of Digital Logistics Market Performance in Developing Countries with Hybrid MCDM Methods. JOEEP: Journal of Emerging Economies and Policy, 8(2), 559-576.
  • 36. Özekenci, E. K. (2023). Assessing The Logistics Market Performance of Developing Countries by SWARA-CRITIC Based CoCoSo Methods. LogForum, 19(3). https://doi.org/10.17270/J.LOG.2023.857
  • 37. Özekenci, E.K. (2024). Assessment of the Logistics Performance Index of OPEC Countries with ENTROPY, CRITIC and LOPCOW-based EDAS Methods. Journal of Transportation and Logistics, 9(2), 260-279. https://doi.org/10.26650/JTL.2024.1339285
  • 38. Peker, İ., Ar, İ. M., & Baki, B. (2019). Lojistik Firmalarının Çevresel Yenilik Performanslarının Bulanık ÇKKV Yaklaşımı ile Değerlendirilmesi. Journal of Entrepreneurship and Innovation Management, 8(2), 1-20.
  • 39. Rezaei, J., van Roekel, W. S., & Tavasszy, L. (2018). Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transport policy, 68, 158-169. https://doi.org/10.1016/j.tranpol.2018.05.007
  • 40. Sbihi, A., & Eglese, R. W. (2010). Combinatorial optimization and green logistics. Annals of Operations Research, 175, 159-175. https://doi.org/10.1007/s10479-009-0651-z
  • 41. Sergi, B. S., D’Aleo, V., Konecka, S., Szopik-Depczyńska, K., Dembińska, I., & Ioppolo, G. (2021). Competitiveness and the Logistics Performance Index: The ANOVA method application for Africa, Asia, and the EU regions. Sustainable Cities and Society, 69, 102845. https://doi.org/10.1016/j.scs.2021.102845
  • 42. Shoaib, M., Zhang, S., & Ali, H. (2023). Assessment of sustainable green logistics enablers: A robust framework using fuzzy DEMATEL and ISM approach. International Journal of Environmental Science and Technology, 20(10), 11407-11426. https://doi.org/10.1007/s13762-022-04709-4
  • 43. Soh, K. L., Wong, W. P., & Tang, C. F. (2021). The role of institutions at the nexus of logistic performance and foreign direct investment in Asia. The Asian Journal of Shipping and Logistics, 37(2), 165-173. https://doi.org/10.1016/j.ajsl.2021.02.001
  • 44. Starostka-Patyk, M., Bajdor, P., & Białas, J. (2024). Green logistics performance Index as a benchmarking tool for EU countries environmental sustainability. Ecological Indicators, 158, 111396. https://doi.org/10.1016/j.ecolind.2023.111396
  • 45. Tinnes, E., Perez, F., Kandel, M., & Probst, T. (2024). Decarbonizing logistics: Charting the path ahead. McKinsey & Company. Retrieved from: https://www.mckinsey.com/capabilities/operations/our-insights/decarbonizing-logistics-charting-the-path-ahead#/ (12.11.2024).
  • 46. Türkoğlu, M., & Duran, G. (2023). Çok kriterli karar verme yöntemleri ile bölgesel kapsamli ekonomik ortaklik (rcep) ülkelerinin lojistik performanslarinin değerlendirilmesi. Ekonomi Bilimleri Dergisi, 15(1), 45-69. https://doi.org/10.55827/ebd.1247297
  • 47. Ulutaş, A., & Karaköy, Ç. (2019). An analysis of the logistics performance index of EU countries with an integrated MCDM model. Economics and Business Review, 5(4), 49-69. https://doi.org/10.18559/ebr.2019.4.3
  • 48. Ulutaş, A., & Karaköy, Ç. (2021). Evaluation of LPI values of transition economies countries with a grey MCDM model. In Handbook of research on applied AI for international business and marketing applications (pp. 499-511). IGI Global. https://doi.org/10.4018/978-1-7998-5077-9.ch024
  • 49. Vahabzadeh, A. H., Asiaei, A., & Zailani, S. (2015). Green decision-making model in reverse logistics using FUZZY-VIKOR method. Resources, Conservation and Recycling, 103, 125-138. https://doi.org/10.1016/j.resconrec.2015.05.023
  • 50. Yalçın, B., & Ayvaz, B. (2020). Çok Kriterli Karar Verme Teknikleri ile Lojistik Performansin Değerlendirilmesi. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 19(38), 117-138.
  • 51. Yildirim, B. F., & Adiguzel Mercangoz, B. (2020). Evaluating the logistics performance of OECD countries by using fuzzy AHP and ARAS-G. Eurasian Economic Review, 10(1), 27-45. https://doi.org/10.1007/s40822-019-00131-3
  • 52. Yıldırım, M. (2023). Cluster Analysis on Supply Chain Management-Related Indicators. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 12(5), 2499-2520. https://doi.org/10.15869/itobiad.1251841
  • 53. Yingfei, Y., Mengze, Z., Zeyu, L., Ki-Hyung, B., Avotra, A. A. R. N., & Nawaz, A. (2022). Green logistics performance and infrastructure on service trade and environment-measuring firm’s performance and service quality. Journal of King Saud University-Science, 34(1), 101683. https://doi.org/10.1016/j.jksus.2021.101683
  • 54. Zhang, M., Sun, M., Bi, D., & Liu, T. (2020). Green logistics development decision-making: factor identification and hierarchical framework construction. IEEE Access, 8 127897-127912. https://doi.org/10.1109/ACCESS.2020.3008443
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-539cc2d4-79e7-4f9d-b39a-49891066dc44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.