PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Terrigenous organic matter and formation of siderite in the Bathonian Ore-Bearing Clay Formation at Gnaszyn, Poland : a petrochemical study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Bathonian Ore-Bearing Clay Formation, outcropping in the Gnaszyn open-pit mine at Częstochowa (Poland), includes several horizons of abundant iron carbonate concretions. The cores of the concretionary bodies commonly contain organic matter (OM), dominated by fragments of wood. These organic particles usually display well-preserved primary structures and occur rarely as more deformed and/or completely degraded fragments. Their original structures are frequently replaced by or filled with secondary mineralization, mostly represented by pyrite. The maceral composition of the OM of the wood fragments is dominated by huminite with subordinate inertinite and resinite. Vitrinite reflectance analyses revealed values lower than 0.45%. The total organic carbon content (TOC) displayed variable results between 2% and 18%. Rock-Eval analyses revealed low amounts of hydrogen (< 45 mg HC/g TOC) and relatively high amounts of oxygen (up to 136 mg CO2/g TOC). Analysed samples contained small quantities of free hydrocarbons (S1 peak < 0.26 mg HC/g rock) as well as hydrocarbons, generated during pyrolysis (S2 peak < 7.05 mg HC/g rock). These features are characteristic for immature type IV kerogen of terrigenous origin. However, the maceral composition and frequent occurrence of siderite affecting the Rock-Eval parameters may indicate that the original kerogen belonged to type III. According to previous authors, the OM of terrigenous origin was delivered to well-oxygenated water of the palaeo-basin in the Częstochowa area. The present data indicate that intensive biodegradation of this OM at shallow burial depleted the oxygen supply within the sediment, driving the pore water into dys- or anoxic conditions. The activity of microorganisms in reducing iron and/or sulphates became the dominant biodegradation reaction, introducing Fe2+ and HCO3- ions into the system. Negative δ13C values in the cortex of the concretions analysed indicate that the bicarbonate consumed in siderite precipitation was supplied by this microbial activity. The reducing microenvironments developed in the sediment and wood fragments acted as nucleation sites for siderite precipitation.
Rocznik
Strony
295--312
Opis fizyczny
Bibliogr. 78 poz., fot., rys.
Twórcy
autor
  • University of Wrocław, The Institute of Geological Sciences, pl. Maksa Borna 9, 50-204 Wrocław, Poland
  • University of Wrocław, The Institute of Geological Sciences, pl. Maksa Borna 9, 50-204 Wrocław, Poland
autor
  • University of Wrocław, The Institute of Geological Sciences, pl. Maksa Borna 9, 50-204 Wrocław, Poland
  • University of Silesia, The Institute of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Ahmed. M. & Lin. L.. 2017. Ferric reduction in organic matter oxidation and its applicability for anaerobic wastewater treatment: a review and future aspects. Reviews in Environmental Science and Bio/Technology. 16: 273-287.
  • 2. Alyousuf. T.. Algharbi. W.. Algeer. R. & Samsudin. A.. 2011. Source rock characterization of the Hanifa and Tuwaiq Mountain formations in the Arabian Basin. based on Rock-Eval Pyrolysis and the Modified Delta Log R Method. [Paper presented at the SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, May 2011], paper, SPE-149119-MS, published: 15.05.2011, doi: https://doi.org/10.2118/149119-MS
  • 3. Bassler. R. S.. 1908. The formation of geodes with remarks on the silicification of fossils. Proceedings of the United States National Museum. 35: 133-154.
  • 4. Behar. F.. Beaumont. V.. Penteado. H. L. & De. B.. 2001. Rock-Eval 6 technology: Performances and developments technologie Rock-Eval 6: performances et developpements. Oil and Gas Science and Technology. 56: 111-134.
  • 5. Bethke. C. M.. Sanford. R. A.. Kirk. M. F.. Jin. Q. & Flynn. T. M.. 2011. The thermodynamic ladder in geomicrobiology. American Journal of Science. 311: 183-210.
  • 6. Blome. C. D. & Albert. N. R.. 1985. Carbonate concretions: An ideal sedimentary host for microfossils. Geology. 13: 212-215.
  • 7. Bojanowski. M. J.. Barczuk. A. & Wetzel. A.. 2014. Deep-burial alteration of early-diagenetic carbonate concretions formed in Palaeozoic deep-marine greywackes and mudstones (Bardo Unit, Sudetes Mountains, Poland). Sedimentology, 61: 1211-1239.
  • 8. Bojanowski, M. J. & Clarkson, E. N. K., 2012. Origin of siderite concretions in microenvironments of methanogenesis developed in a sulfate reduction zone: an exception or a rule? Journal of Sedimentary Research, 82: 585-598.
  • 9. Ceglarska-Stefańska, G., 1994. Petrografia węgla kamiennego. In: Czapliński, A. (ed.), Węgiel kamienny. Wydawnictwa Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, Kraków, pp. 41-55. [In Polish.]
  • 10. Chapelle, F. H. & Lovley, D. R., 1992. Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: A mechanism for producing discrete zones of high-iron ground water. Ground Water, 30: 29-36.
  • 11. Coleman, M. L., 1993. Microbial processes: control on the shape and composition of carbonate concretions. Marine Geology, 113: 127-140.
  • 12. Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C. & Pye, K., 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature, 361: 436-438.
  • 13. Coleman, M. L. & Raiswell, R., 1993. Microbial mineralization of organic matter: Mechanisms of self-organization and inferred rates of precipitation of diagenetic minerals: Royal Society of London, Philosophical Transactions, 344 (A): 69-87.
  • 14. Cotroneo, S., Schiffbauer, J. D., McCoy, V. E., Wortmann, U. G., Darroch, S. A. F., Peng, Y. & Laflamme, M., 2016. A new model of the formation of Pennsylvanian iron carbonate concretions hosting exceptional soft-bodied fossils in Mazon Creek, Illinois. Geobiology, 14: 543-555.
  • 15. Curtis, C. D., Coleman, M. L. & Love, L. G., 1986. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochimica et Cosmochimica Acta, 50: 2321-2334.
  • 16. Dadlez, R., Marek, S. & Pokorski, J. (eds.), 2000. Geological Map of Poland without Cenozoic Deposits, Scale 1:1000000. Polish Geological Institute - National Research Institute, Warszawa. [In Polish.]
  • 17. Daly, R. A., 1900. The calcareous concretions of Kettle Point, Lambton count, Ontario. The Journal of Geology, 8: 135.
  • 18. Dayczak-Calikowska, K., 1997. Jura środkowa: sedymentacja, paleogeografia i paleotektonika. In: Marek, S. & Pajchlowa, M. (eds.), Epikontynentalny perm i mezozoik w Polsce. Prace Państwowego Instytutu Geologicznego, 153: 269-282. [In Polish.]
  • 19. Dayczak-Calikowska, K. & Kopik, J., 1973. Jura środkowa. In: Budowa geologiczna Polski, Tom 1, Stratygrafia, cz. 2, Mezozoik.. Wydawnictwa Geologiczne, Warszawa, pp. 237324. [In Polish.]
  • 20. Dellisanti, F., Pini, G. A. & Baudin, F., 2010. Use of Tmax as a thermal maturity indicator in orogenic successions and comparison with clay mineral evolution. Clay Minerals, 45: 115-130.
  • 21. Dembicki, H., Jr., 2017. Practical Petroleum Geochemistry for Exploration and Production. Elsevier, 342 pp.
  • 22. Dembicz, K. & Praszkier, T., 2003. Zróżnicowanie litofacjalne osadów keloweju w rejonie Zawiercia. Volumina Jurassica, 1: 53-58. [In Polish.]
  • 23. Ebrahiminezhad, A., Manafi, Z., Berenjian, A., Kianpour, S. & Ghasemi, Y., 2017. Iron-reducing bacteria and iron nanostructures. Journal of Advanced Medical Sciences and Applied Technologies, 3: 9-16.
  • 24. Esther, J., Sukla, L. B., Pradhan, N. & Panda, S., 2015. Fe(III) reduction strategies of dissimilatory iron reducing bacteria. Korean Journal of Chemical Engineering, 32: 1-14.
  • 25. Feldman-Olszewska, A., 1997. Depositional architecture of the Polish epicontinental Middle Jurassic basin. Geological Quarterly, 41: 491-508.
  • 26. Feldman-Olszewska, A., Pieńkowski, G. & Wierzbowski, A., 2017. Mapy miąższości skał w podziale na systemy stratygraficzne - jura. In: Nawrocki, J. & Becker, A. (eds), Atlas geologiczny Polski. Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, Warszawa, pp. 72-73. [In Polish.]
  • 27. Gautier, D. L., 1982. Siderite concretions: indicator of early diagenesis in the gammon shale (Cretaceous). Journal of Sedimentary Petrology, 52: 859-871.
  • 28. Gedl, P., Kaim, A., Leonowicz, P., Boczarowski, A., Dudek, T., Kędzierski, M., Rees, J., Smoleń, J., Szczepanik, P., Sztajner, P., Witkowska, M. & Ziaja, J., 2012 Palaeoenvironmental reconstruction of Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geologica Polonica, 62: 463-484.
  • 29. Hackley, P. C., Araujo, C. V., Borrego, A. G., Bouzinos, A., Cardott, B. J., Cook, A.C., Eble, C., Flores, D., Gentzis, T., Gonçalves, P. A., Mendonęa Filho, J. G., Hámor-Vidó, M., Jelonek, I., Kommeren, K., Knowles, W., Kus, J., Mastalerz, M., Menezes T. R., Newman, J., Oikonomopoulos, J. K., Pawlewicz, M., Pickel, W., Potter, J., Ranasinghe, P., Read, H., Reyes, J., De La Rosa Rodriguez, G., de Souza, I. V. A. F., Suárez-Ruiz, I., Sykorova I. & Valentine, B. J., 2015. Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement. Marine and Petroleum Geology, 59: 22-34.
  • 30. Haisig, J., 2011. Objaśnienia do Mapy Geologicznej Polski w skali 1:200000. Arkusz 57, Częstochowa. Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, Warszawa, 61 pp. [In Polish.]
  • 31. Haisig, J. & Wilanowski, S., 2008. Objaśnienia do reambulowanej Mapy Geologicznej Polski w skali 1:200000. Arkusz 56, Kluczbork. Państwowy Instytut Geologiczny, Warszawa, 61 pp. [In Polish.]
  • 32. Janssen, K., Mahler, B., Rust, J., Bierbaum, G. & McCoy, V E., 2022. The complex role of microbial metabolic activity in fossilization. Biological Reviews, 97: 449-465.
  • 33. Killops, S. & Killops V., 2005. Introduction to Organic Geochemistry, Second Edition. Blackwell Publishing Ltd, 393 pp.
  • 34. Kruszewska, K. & Dybova-Jachowicz, S., 1997. Zarys petrologii węgla. Skrypty Uniwersytetu Śląskiego, 525, 200 pp. Wydawnictwo Uniwersytetu Śląskiego, Katowice. [In Polish.]
  • 35. Kutek, J., 1994. Jurassic tectonic events in south-eastern cratonic Poland. Acta Geologica Polonica, 44: 167-222.
  • 36. Labus, M., Kierat, M., Matyasik, I., Spunda, K., Kania, M., Janiga, M., Bieleń, W., 2019. The use of compiled thermal methods in the characteristics of source rocks on the example of menilite beds. Nafta-Gaz, 2: 67-76. [In Polish, with English summary.]
  • 37. Lafargue, E., Marquis, F. & Pillot, D., 1998. Rock-Eval 6 applications in hydrocarbon exploration, production and soils contamination studies. Oil and Gas Science and Technology, 53: 421-437.
  • 38. Lamlom, S. H. & Savidge, R. A., 2003. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass and Bioenergy, 25: 381-388.
  • 39. Leonowicz, P., 2013. The significance of mudstone fabric combined with palaeoecological evidence in determining sedimentary processes - an example from the Middle Jurassic of southern Poland. Geological Quarterly, 57: 243-260.
  • 40. Leonowicz, P., 2015a. Storm-influenced deposition and cyclicity in a shallow-marine mudstone succession - example from the Middle Jurassic ore-bearing clays of the Polish Jura (southern Poland). Geological Quarterly, 59: 325-344.
  • 41. Leonowicz, P. 2015b. Ichnofabrics of shallow-marine mudstone, the result of changing environmental conditions: an example from the Middle Jurassic ore-bearing clay from southern Poland. Facies, 61: 11, https://doi.org/10.1007/ s10347-015-0438-4.
  • 42. Leonowicz, P., 2016. Nearshore transgressive black shale from the Middle Jurassic shallow-marine succession from southern Poland. Facies, 62: 16.
  • 43. Lin, C. Y., Turchyn, A. V., Krylov, A. & Antler, G., 2020. The microbially driven formation of siderite in salt marsh sediments. Geobiology, 18: 207-224.
  • 44. Majewski, W., 2000. Middle Jurassic concretions from Częstochowa (Poland) as indicators of sedimentation rates. Acta Geologica Polonica, 50: 431-439.
  • 45. Marynowski, L., Zatoń, M., Simoneit, R. T. Bernd, Otto, A., Jędrysek M. O., Grelowski C. & Kurkiewicz, S., 2007. Compositions, sources and depositional environments of organic matter from the Middle Jurassic clays of Poland. Applied Geochemistry, 22: 2456-2485.
  • 46. Matyja, B. A. & Wierzbowski, A., 2000. Ammonites and stratigraphy of the uppermost Bajocian and Lower Bathonian between Częstochowa and Wieluń, Central Poland. Acta Geologica Polonica, 50: 191-209
  • 47. Matyja, B. A. & Wierzbowski, A., 2003. Biostratygrafia amonitowa formacji częstochowskich iłów rudonośnych (najwyższy bajos - górny baton) z odsłonięć w Częstochowie. Tomy Jurajskie, 1: 3-6. [In Polish.]
  • 48. McCarthy, K., Rojas, K., Palmowski, D., Peters, K. & Stankiewicz, A., 2011. Basic petroleum geochemistry for source rock evaluation. Oilfield Review, 23: 32-43.
  • 49. McCrea, J. M., 1950. The isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18: 849-857.
  • 50. Mozley, P. S., 1996. The internal structure of carbonate concretions in mudrocks: a critical evaluation of the conventional concentric model of concretion growth. Sedimentary Geology, 103: 85-91.
  • 51. Mozley, P. S. & Carothers, W. W., 1992. Elemental and isotopic composition of siderite in the Kuparuk Formation, Alaska: effect of microbial activity and water/sediment interaction on early pore-water chemistry. Journal of Sedimentary Petrology, 62: 681-692.
  • 52. Osika, R. & Cieśla, E., 1990. Sedimentary ores. In: Osika, R. (ed.), Geology of Poland vol. VI, Mineral Deposits. Wydawnictwa Geologiczne, Warszawa, pp. 137-147.
  • 53. Peters, K. E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. American Association of Petroleum Geologists Bulletin, 70: 318-329.
  • 54. Peters, K. E., Curry, D. J. & Kacewicz, M., 2012. An overview of basin and petroleum system modeling: Definitions and Concepts. In: Peters, K. E., Curry, D. J. & Kacewicz, M., (eds.), Basin Modeling: New Horizons in Research and Application. AAPG Hedberg Series, 4: 1-16.
  • 55. Pieńkowski, G., Schudack, M. E., Bosak, P., Enay, R., Feldman-Olszewska, A., Golonka, J., Gutowski, J., Herngreen, G. F. W., Jordan, P., Krobicki, M., Lathuiliere, B., Leinfelder, R. R., Michalfk. J., Monnig, E., Noe-Nygaard,N., Palfy, J., Pint, A., Rasser, M. W., Reisdorf, A. G., Schmid, D. U., Schweigert, G., Surlyk, F., Wetzel, A. & Wong, T. E., 2008. Jurassic. In: McCann, T. (ed.), The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic. Geological Society of London, pp. 823-922.
  • 56. Pouchou, J. L. & Pichoir, J., 1984. A new model for quantitative X-ray microanalysis. Recherche Aerospatiale 3: 167-192. Pye, K., Dickson, J. A. D., Schiavon, N., Coleman, M. L. & Cox, M., 1990. Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England. Sedimentology, 37: 325-343.
  • 57. Raiswell, R., 1988. Chemical model for the origin of minor limestone-shale cycles by anaerobic methane oxidation. Geology, 16: 641-644.
  • 58. Raiswell, R. & Fisher, Q. J., 2000. Mudrock- hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. Journal of the Geological Society, 157: 239-251.
  • 59. Ratajczak, T. & Korona, W., 2000. Mineralogical-chemical and technological characteristics of mineral matter from dumps after mining of iron ores the Częstochowa region (Central Poland). Przegląd Geologiczny, 48: 607-616. [In Polish, with English summary.]
  • 60. Richardson, W. A., 1919. On the origin of septarian structure. Mineralogical Magazine, 56: 327-337.
  • 61. Roberts, J. A., Kenward, P. A., Fowle, D. A., Goldstein, R. H., Gonzalez, L. A. & Moore, D. S., 2013. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proceedings of the National Academy of Sciences, 110: 14540-14545.
  • 62. Różycki, S. Z., 1953. Górny dogger i dolny malm Jury Krakowsko-Częstochowskiej. Prace Instytutu Geologicznego, 17: 1-351. [In Polish.]
  • 63. Selles-Martmez, J., 1996. Concretion morphology, classification and genesis. Earth-Science Reviews, 41: 177-210.
  • 64. Stupnicka, E. & Stempień-Sałek, M., 2016. Geologia regionalna Polski. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, 342 pp. [In Polish.]
  • 65. Szczepanik, P., Witkowska, M. & Sawłowicz, Z., 2007. Geochemistry of Middle Jurassic mudstones (Kraków- Częstochowa area, southern Poland): interpretation of the depositional redox conditions. Geological Quarterly, 51: 57-66.
  • 66. Szczepańska, M. & Witkowska, M., 2007. Surowce ilaste ceramiki budowlanej w dawnych ośrodkach wydobycia rud żelaza. Warsztaty 2007 z cyklu: Zagrożenia naturalne w górnictwie. Materiały Warsztatów, pp. 153-163. [In Polish.]
  • 67. Tarr, W. A., 1921. Syngenetic origin of concretions in shale. Bulletin of the Geological Society of America, 32: 373-384.
  • 68. Taylor, K. G. & Macquarker, J. H. S., 2000. Early diagenetic pyrite morphology in a mudstone-dominated succession: the Lower Jurassic Cleveland Ironstone Formation, eastern England. Sedimentary Geology, 131: 77-86.
  • 69. Tissot, B., Durand, B., Espitalie, J. & Combaz, A., 1974. Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bulletin, 58: 499-506.
  • 70. Wetzel, A. & Bojanowski, M., 2022. Radish concretions grown in mud during compaction. Sedimentology, 69: 750-774.
  • 71. Wierzbowski, H., 2015. Seawater temperatures and carbon isotope variations in central European basins at the Middle-Late Jurassic transition (Late Callovian-Early Kimmeridgian). Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 506-523.
  • 72. Wierzbowski, H., Dembicz, K. & Praszkier, T., 2009. Oxygen and carbon isotope composition of Callovian-Lower Oxfordian (Middle-Upper Jurassic) belemnite rostra from central Poland: A record of a Late Callovian global sea-leve rise? Palaeogeography, Palaeoclimatology, Palaeoecology, 283: 182-194.
  • 73. Wilkin, R. T. & Barnes, H. L., 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61: 323-339.
  • 74. Witkowska, M., 2012. Palaeoenvironmental significance of iron carbonate concretions from the Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geologica Polonica, 62: 307-324.
  • 75. Yeboah, D., Burton, A. J., Storer, A. J. & Opuni-Frimpong, E., 2014. Variation in wood density and carbon content of tropical plantation tree species from Ghana. New Forests 45: 35-52.
  • 76. Zatoń, M., Machocka, S., Wilson, M. A., Marynowski, L. & Taylor, P. D., 2011. Origin and paleoecology of Middle Jurassic hiatus concretions from Poland. Facies, 57: 275-300.
  • 77. Zatoń, M., Marynowski, L., Szczepanik, P., Bond, D. P. & Wignall, P. B., 2009. Redox conditions during sedimentation of the Middle Jurassic (Upper Bajocian-Bathonian) clays of the Polish Jura (south-central Poland). Facies, 55: 103-114.
  • 78. Zatoń, M., Rakociński, M. & Marynowski, L., 2008. Pyrite framboids as paleoenvironmental indicators. Przegląd Geologiczny, 56: 158-164. [In Polish, with English summary.]
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53932298-8adc-4506-8273-a84d74d3cb5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.