PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of particle size on surface roughness and morphology of heat-treated electroless Ni-YSZ coating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper discusses the surface characterisation of electroless nickel-yttria-stabilised zirconia (Ni-YSZ) coating with varying YSZ particle sizes and undergoes heat treatment at a temperature between 300-400°C for 1-2 hours for wear resistance purposes. This finding will be helpful to the application of Ni-YSZ as an alternative coating for cutting tools. Design/methodology/approach: The surface characterisation was analysed using JOEL Scanning Electron Microscope (SEM) coupled with Energy Dispersive X-ray (EDX) JSM 7800F. The crystallographic structure of materials was analysed by X-ray diffraction (XRD) Bruker D8 Advance instrument. The Ni-YSZ coating was deposited using electroless nickel co-deposition of 8YSZ ceramic particles with a nano, mixed and microparticle sizes onto a high-speed steel (HSS) substrate. The coatings were heat treated at temperature 300-400°C and time 1-2 hours. The surface roughness was measured using Mitutoyo surface roughness tester SJ-301. Findings: The electroless Ni-YSZ coating deposited has an average thickness of 30 μm. It is found that the coating morphology electroless coating without YSZ particle incorporation (EN) and Ni-YSZ nano (N) is smoother compared to the Ni-YSZ mixed (NM) and Ni-YSZ micro (M). The EDS composition analysis shows the YSZ content in the electroless Ni-YSZ coating for N samples is the lowest, whereas NM samples are the highest. This resulted in the surface roughness behaviour where the mixed-size YSZ particle gives the highest roughness at all temperatures. The XRD analysis shows that heating temperatures above 300°C caused the precipitation of Ni3P crystalline. Research limitations/implications: Previous studies in the surface characterisation of electroless nickel composite are scarce; thus, the study has limitations in finding supporting data. Originality/value: The surface characterisation especially related to the surface roughness of the electroless nickel, either the Ni-P or composites or alloys are rarely reported. Thus, this study enlightened the effect of particle size on surface roughness and morphology of heat-treated coatings.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Faculty of Engineering Technology, University College TATI (UC TATI), 24000 Kemaman, Terengganu, Malaysia
  • Faculty of Engineering Technology, University College TATI (UC TATI), 24000 Kemaman, Terengganu, Malaysia
autor
  • Faculty of Engineering Technology, University College TATI (UC TATI), 24000 Kemaman, Terengganu, Malaysia
  • School of Engineering, University of Edinburgh, Edinburgh EH8 9QT, Scotland, UK
autor
  • Faculty of Manufacturing Engineering, University Teknologi Malaysia, Skudai, Johor, Malaysia
Bibliografia
  • [1] B. Fotovvati, N. Namdari, A. Dehghanghadikolaei, On Coating Techniques for Surface Protection: A Review, Journal of Manufacturing and Materials Processing 3/1 (2019) 28. DOI: https://doi.org/10.3390/jmmp3010028
  • [2] B.A. Lyashenko, Z.A. Stotsko, O.A. Kuzin, M.O. Kuzin, V.A. Mechnik, Analysis of friction interaction and optimisation of detail surface hardening technologies using non-local mathematical models, Journal of Achievements in Materials and Manufacturing Engineering 100/1 (2020) 20-25. DOI: https://doi.org/10.5604/01.3001.0014.1960
  • [3] A.K. Krella, Chapter 16 - Degradation of protective PVD coatings, in: A.S.H. Makhlouf, M. Aliofkhazraei (eds), Handbook of Materials Failure Analysis with Case Studies from the Chemicals, Concrete and Power Industries, Butterworth Heinemann, Oxford, 2016, 411-440. DOI: https://doi.org/10.1016/B978-0-08-100116-5.00016-8
  • [4] N.B. Baba, H.M.M. Sapie, Investigation on NiCrSiB Coating via HVOF Spraying, Advanced Science Letters 19/3 (2013) 981-984. DOI: https://doi.org/10.1166/asl.2013.4826
  • [5] A. Góral, W. Żórawski, M. Makrenek, S. Kowalski, Microstructure and properties of cold sprayed composite coatings, Journal of Achievements in Materials and Manufacturing Engineering 81/2 (2017) 49-55. DOI: https://doi.org/10.5604/01.3001.0010.2037
  • [6] M.S. Safavi, F.C. Walsh, Electrodeposited Co-P alloy and composite coatings: A review of progress towards replacement of conventional hard chromium deposits, Surface and Coatings Technology 422 (2021) 127564. DOI: https://doi.org/10.1016/j.surfcoat.2021.127564
  • [7] P. Jenczyk, H. Grzywacz, M. Milczarek, D.M. Jarząbek, Mechanical and Tribological Properties of Co-Electrodeposited Particulate-Reinforced Metal Matrix Composites: A Critical Review with Interfacial Aspects, Materials 14/12 (2021) 3181. DOI: https://doi.org/10.3390/ma14123181
  • [8] J. Sudagar, J. Lian, W. Sha, Electroless nickel, alloy, composite and nano coatings - A critical review, Journal of Alloys and Compounds 571 (2013) 183-204. DOI: https://doi.org/10.1016/j.jallcom.2013.03.107
  • [9] D.E. Zakrzewska, M.H. Buszko, A.K. Krella, A. Komenda, G. Mordarski, R.P. Socha, Damage Development on the Surface of Nickel Coating in the Initial Period of Erosion. Materials 14/11 (2021) 3123. DOI: https://doi.org/10.3390/ma14113123
  • [10] D. Barker, Electroless deposition of metals, Transactions of IMF 71/3 (1993) 121-124. DOI: https://doi.org/10.1080/00202967.1993.11871003
  • [11] K.H. Hur, J.H. Jeong, D.N. Lee, Microstructures and crystallization of Electroless Ni-P deposits, Journal of Materials Science 25 (1990) 2573-2584. DOI: https://doi.org/10.1007/BF00638061
  • [12] Z.A. Hamid, Review Article: Composite and Nanocomposite Coatings, Journal of Metallurgical Engineering 3/1 (2014) 29-42. DOI: https://doi.org/10.14355/me.2014.0301.04
  • [13] S.S. Mirhosseini, F. Mahboubi, Effect of plasma nitriding on tribological properties of nickel boron-nanodiamond electroless coatings, Surface and Coatings Technology 435 (2022) 128216. DOI: https://doi.org/10.1016/j.surfcoat.2022.128216
  • [14] M. Trzaska, A. Mazurek, Nanocomposite Ni/diamond layers produced by the electrocrystallization method, Journal of Achievements in Materials and Manufacturing Engineering 75/1 (2016) 34-40. DOI: https://doi.org/10.5604/17348412.1228367
  • [15] N. Norsilawati, C.I.M. Fathil, N. Bahiyah Baba, S.N. Azinee, M.H. Ibrahim, Characterization of Nickel-Cubic Boron Nitride Coating via Electroless Nickel Deposition on High Speed Steel and Carbide Substrates, Journal of Physics: Conference Series 1874 (2021) 012070. DOI https://doi.org/10.1088/1742-6596/1874/1/012070
  • [16] Y. de Hazan, D. Werner, M. Z'graggen, M. Groteklaes, T. Graule, Homogeneous Ni-P/Al2O3 nanocomposite coatings from stable dispersions in electroless nickel baths, Journal of Colloid and Interface Science 328/1 (2008) 103-109. DOI: https://doi.org/10.1016/j.jcis.2008.08.033
  • [17] N.B. Baba, A. Davidson, T. Muneer, Investigation of Ni-YSZ composite manufactured by electroless Ni coating, Applied Mechanics and Materials 52-54 (2011) 1660-1664. DOI: https://doi.org/10.4028/www.scientific.net/AMM.52-54.1660
  • [18] N.B. Baba, A. Davidson, T. Muneer, YSZ-reinforced Ni-P deposit: An effective condition for high particle incorporation and porosity level, Advanced Materials Research 214 (2011) 412-417. DOI: https://doi.org/10.4028/www.scientific.net/AMR.214.412
  • [19] M. Barman, T.K. Barman, P. Sahoo, Effect of Coating Bath Parameters on Properties of Electroless Nickel-Boron Alloy Coatings. International Journal of Surface Engineering and Interdisciplinary Materials Science 10/1 (2022) 1-26. DOI: https://doi.org/10.4018/IJSEIMS.2022010101
  • [20] M. Szota, A. Łukaszewicz, A. Bukowska, Influence of mechanical activation and heat treatment on surface development and oxide layer thickness of Ti6Al4V ELI alloy, Journal of Achievements in Materials and Manufacturing Engineering 97/1 (2019) 69-76. DOI: https://doi.org/10.5604/01.3001.0013.8544
  • [21] S.A. Karrab, M.A. Doheim, M.S. Aboraia, S.M. Ahmed, Effect of Heat Treatment and Bath Composition of Electroless Nickel-Plating on Cavitation Erosion Resistance, Journal of Engineering Sciences 41/5 (2013) 1989-2011. DOI: https://dx.doi.org/10.21608/jesaun.2013.114930
  • [22] A.M. Abioye, S. Faraji, F.N. Ani, Effect of Heat Treatment on The Characteristics of Electroless Activated Carbon-Nickel Oxide Nanocomposites, Jurnal Teknologi 79/7-3 (2017) 61-67. DOI: https://doi.org/10.11113/jt.v79.11898
  • [23] S. Arulvel, D. Dsilva Winfred Rufuss, S.S. Sharma, A. Mitra, A. Elayaperumal, M.S. Jagatheeshwaran, A novel water quench approach for enhancing the surface characteristics of electroless nickel phosphorous deposit, Surfaces and Interfaces 23 (2021) 100975. DOI: https://doi.org/10.1016/j.surfin.2021.100975
  • [24] J.T. Winowlin Jappes, N.C. Brintha, M. Adam Khan, Effect of Magnetic Field, Heat Treatment and Dry Wear Analysis on Electroless Nickel Deposits, Journal of Bio- and Tribo- Corrosion 7 (2021) 20. DOI: https://doi.org/10.1007/s40735-020-00434-y
  • [25] P. Sampath Kumar, P. Kesavan Nair, Studies on crystallization of electroless Ni-P deposits, Journal of Materials Processing Technology 56/1-4 (1996) 511-520. DOI: https://doi.org/10.1016/0924-0136(96)85110-7
  • [26] S.H. Bae, S. Kim, S.H. Yi, I. Son, K.T. Kim, H. Chung, Effect of Surface Roughness and Electroless Ni-P Plating on the Bonding Strength of Bi-Te-based Thermoelectric Modules, Coatings 9/3 (2019) 213. DOI: https://doi.org/10.3390/coatings9030213
  • [27] N. Sharma, N. Kumar, S. Dash, C.R. Das, R.V.S. Rao, A.K. Tyagi, B. Raj, Scratch resistance and tribological properties of DLC coatings under dry and lubrication conditions, Tribiology International 56 (2012) 129-140. DOI: https://doi.org/10.1016/j.triboint.2012.06.020
  • [28] C.R. Raghavendra, S. Basavarajappa, I. Sogalad, Study on influence of Surface roughness of Ni-Al2O 3 nano composite coating and evaluation of wear characteristics, IOP Conference Series: Materials Science and Engineering 310 (2018) 012112. DOI: https://doi.org/10.1088/1757-899X/310/1/012112
  • [29] N.B. Baba, M.F. Omar, S. Sharif, S.B. Mohamed, Processing and properties of Ni/YSZ composite coating on high speed steel cutting tool, Journal of Fundamental and Applied Sciences 10/2S (2018) 688-700. DOI: http://dx.doi.org/10.4314/jfas.v10i2s.51
  • [30] D. Ahmadkhaniha, C. Zanella, The Effects of Additives, Particles Load and Current Density on Codeposition of SiC Particles in NiP Nanocomposite Coatings. Coatings 9/9 (2019) 554. DOI: https://doi.org/10.3390/coatings9090554
  • [31] K.U.V. Kiran, A. Arora, R. Sunil, R. Dumpala, Effect of heat treatment on the temperature dependent wear characteristics of electroless Ni-P-BN(h) composite coatings, SN Applied Sciences 2 (2020) 1101. DOI: https://doi.org/10.1007/s42452-020-2920-z
  • [32] K. Shahzad, E.M. Fayyad, M. Nawaz, O. Fayyaz, R.A. Shakoor, M.K. Hassan, M.A. Umer, M.N. Baig, A. Raza, A.M. Abdullah, Corrosion and Heat Treatment Study of Electroless NiP-Ti Nanocomposite Coatings Deposited on HSLA Steel, Nanomaterials 10/10 (2020) 1932. DOI: https://doi.org/10.3390/nano10101932
  • [33] M. Buchtík, M. Krystýnová, J. Másilko, J. Wasserbauer, The Effect of Heat Treatment on Properties of Ni-P Coatings Deposited on a AZ91 Magnesium Alloy, Coatings 9/7 (2019) 461. DOI: https://doi.org/10.3390/coatings9070461
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53913bee-9000-46fc-935a-bdd9538aee4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.