Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we discuss existence, uniqueness and boundary behavior of a positive solution to the following nonlinear Sturm-Liouville problem [formula] where [formula], A is a positive differentiable function on (0,1) and a is a positive measurable function in (0,1) satisfying some appropriate assumptions related to the Karamata class. Our main result is obtained by means of fixed point methods combined with Karamata regular variation theory.
Czasopismo
Rocznik
Tom
Strony
613--629
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Departement de Mathematiques Faculte des Sciences de Tunis Campus Universitaire, 2092 Tunis, Tunisia
autor
- Departement de Mathematiques Faculte des Sciences de Tunis Campus Universitaire, 2092 Tunis, Tunisia
Bibliografia
- [1] R.P. Agarwal, D. O'Regan, Nonlinear superlinear singular and nonsingular second order-boundary value problems, J. Differential Equations 143 (1998), 60-95.
- [2] R. Alsaedi, H. Maagli, V. Radulescu, N. Zeddini, Asymptotic behaviour of positive large solutions of quasilinear logistic problems, Electron. J. Qual. Theory Differ. Equ. 28 (2015), 1-15.
- [3] I. Bachar, H. Maagli, Existence and global asymptotic behavior of positive solutions for combined second-order differential equations on the half-line, Adv. Nonlinear Anal. (DOI: 10.1515/anona-2015-0078).
- [4] L.E. Bobisud, D. O'Regan, Positive solutions for a class of nonlinear singular boundary value problems at resonance, J. Math. Anal. Appl. 184 (1994), 263-284.
- [5] A. Callegari, A. Nachman, A nonlinear singular boundary value problem, in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281.
- [6] R. Chemmam, H. Maagli, S. Masmoudi, M. Zribi, Combined effects in nonlinear singular-elliptic problems in a bounded domain, Adv. Nonlinear Anal. 51 (2012), 301-318.
- [7] X. Cheng, G. Dai, Positive solutions of sub-superlinear Sturm-Liouville problems, Appl. Math. Comput. 261 (2015), 351-359.
- [8] F. Cirstea, V. Radulescu, Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris, Ser. I 335 (2002), 447-452.
- [9] F. Cirstea, V. Radulescu, Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type, Trans. Amer. Math. Soc. 359 (2007), 3275-3286.
- [10] R. Dalmasso, On singular nonlinear elliptic problems of second and fourth orders, Bull. Sci. Math. 116 (1992), 95-110.
- [11] S. Dridi, B. Khamessi, S. Turki, Z. Zine El Abidine, Asymptotic behavior of positive solutions of a se.miline.ar Dirichlet problem, Nonlinear Stud. 22 (2015) 1, 1-17.
- [12] R. Kannan, D. O'Regan, A note on singular boundary value problems with solutions in weighted spaces, Nonlinear Anal. 37 (1999), 791-796.
- [13] H. Li, J. Sun, Positive solutions of sublinear Sturm-Liouville problems with changing sign nonlinearity, Comput. Math. Appl. 58 (2009), 1808-1815.
- [14] CD. Luning, W.L. Perry, Positive solutions of negative exponent generalized Emden Fowler boundary value problems, SIAM J. Math. Anal. 12 (1981), 874-879.
- [15] H. Maagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), 2941-2947.
- [16] H. Maagli, S. Masmoudi, Sur les solutions d'un operateur differentiel singulier semi-lineaire, Potential Anal. 10 (1999), 289-304.
- [17] H. Maagli, S. Ben Othman, S. Dridi, Existence and asymptotic behavior of ground state solutions of semilinear elliptic system, Adv. Nonlinear Anal. (DOI: 10.1515/anona-2015-0157).
- [18] V. Radulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, [in:] Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 4 (Michel Chipot, Editor), North-Holland Elsevier Science, Amsterdam, 2007, 483-591.
- [19] E. Seneta, Regularly Varying Functions, Lectures Notes in Mathematics 508, Springer-Verlag, Berlin-New York, 1976.
- [20] Y. Sun, L. Liu, Y. Je Cho, Positive solutions of singular nonlinear Sturm-Liouville boundary value problems, ANZIAM J. 45 (2004), 557-571.
- [21] S.D. Taliaferro, A nonlinear singular boundary value problem,, Nonlinear Anal. 3 (1979) 6, 897-904.
- [22] H. Usami, On a singular elliptic boundary value problem, in a ball, Nonlinear Anal. 13 (1989), 1163-1170.
- [23] N. Yazidi, Monotone method for singular Neumann problem, Nonlinear Anal. 49 (2002), 589-602.
- [24] Y. Zhang, Positive solutions of singular sublinear Emden-Fowler boundary value problems, J. Math. Anal. Appl. 185 (1994), 215-222.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-538fc203-9365-4e8e-924c-b997aea2077e