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Abstract
During the last two decades, statistical methods using lower and upper probabilities have become increas-
ingly popular. One such method is Nonparametric Predictive Inference (NPI), which makes relatively few
modelling assumptions. Due to the specific nature of many reliability and risk scenarios, NPI provides
attractive new solutions to many problems in these fields. This paper provides an introductory overview
to this area, including examples on competing risks, system reliability and prediction of unobserved or
even unknown failure modes.

1 Introduction

Traditionally, uncertainty quantification has been
done mostly by the use of precise probabilities:
For each event A, a single (classical, precise)
probability P (A) is used, typically satisfying Kol-
mogorov’s axioms. Whilst this has been very
successful in many applications, it has long been
recognized to have severe limitations. Classical
probability requires a very high level of preci-
sion and consistency of information, and thus it
is often too restrictive to carefully represent the
multi-dimensional nature of uncertainty. Perhaps
the most straightforward restriction is that the
quality of underlying knowledge cannot be ad-
equately represented using a single probability
measure. An increasingly popular and success-
ful generalization is available through the use of
lower and upper probabilities, denoted by P (A)
and P (A) respectively, with 0 ≤ P (A) ≤ P (A) ≤
1. Walley [45] presents a detailed introduction
of the theory using the term ‘imprecise probabil-
ity’, with a subjective interpretation of lower and
upper probability as maximum price one is will-
ing to pay for a gamble that pays 1 if A occurs
and 0 else, and minimum price at which one is
willing to sell the gamble, respectively. Weich-
selberger [47, 48], using the term ‘interval prob-
ability’, presents a theory that generalizes Kol-

mogorov’s axioms without explicitly requiring an
interpretation. These theories, and further alter-
natives that have been presented, are very sim-
ilar for as far as practical applications are con-
cerned, with differences typically in smaller math-
ematical details. Clearly, the special case with
P (A) = P (A) for all events A provides precise
probability, whilst P (A) = 0 and P (A) = 1
represents complete lack of knowledge about A,
with a flexible continuum in between. A typ-
ical consistency property is conjugacy, that is
P (Ac) = 1 − P (A), with Ac the complementary
event of A. It is useful to keep the following in-
formal interpretation in mind: P (A) can be inter-
preted as reflecting the evidence in favour of event
A, and 1−P (A) as reflecting the evidence against
A hence in favour of Ac. The lower and upper
probabilities in this paper typically result from an
attempt to base inference on relatively few mod-
elling assumptions, not sufficiently strong to lead
to precise probabilities for many events of inter-
est. In this case, the lower and upper probabilities
can be considered to be the maximum lower and
minimum upper bounds, respectively, for all pre-
cise probabilities that are in agreement with the
assumptions made and the data-based inferences
following from these assumptions. For a recent
short introduction to lower and upper probabil-
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ities with many references to the literature see
[22]1.

It should be emphasized that the term ‘impre-
cise probability’, which has become widely ac-
cepted following Walley [45], may provide a false
impression as lower and upper probabilities en-
able more accurate quantification of uncertainty
than precise probability. In applications, clear
advantages over the established theory of pre-
cise probability have been demonstrated, some
of these will be discussed later in this paper.
This justifies the further development of impre-
cise probability, particularly towards building a
complete methodological framework for applica-
tions in statistics, decision support, and related
fields including reliability and risk. Imprecise
probability provides important new methods that
promise greater flexibility for uncertainty quan-
tification. Its advantages include the possibil-
ity to deal with conflicting evidence, to base in-
ferences on weaker assumptions than needed for
precise probabilistic methods, and to allow for
simpler and more realistic elicitation of subjec-
tive information, as imprecise probability does
not require experts to represent their judgements
through a full probability distribution, which of-
ten does not reflect their beliefs appropriately.

Following Walley [45], many of the imprecise
probability-based contributions to statistics fol-
low a generalized Bayesian approach, using a
standard precise parametric sampling model with
a set of prior distributions. In particular, the use
of models from the exponential family is popu-
lar in conjunction with classes of conjugate pri-
ors. Walley’s Imprecise Dirichlet Model (IDM)
for inference in case of multinomial data [46] has
attracted particular attention, also with applica-
tions to lifetime data including right-censored ob-
servations [8] and with partial information on de-
pendencies in failure data [42]. In these models,
taking new information into account is effectively
done by updating all elements of the set of prior
distributions as in Bayesian statistics with pre-
cise prior distributions, leading to a set of poste-
rior distributions which forms the basis for infer-
ences. From technical perspective this procedure
is therefore closely related to robust Bayesian in-
ference [5], but by reporting the indeterminacy
resulting from limited information, use and in-
terpretation of the resulting imprecise posterior
goes beyond a simple sensitivity and robustness
analysis. There are also interesting arguments
to vary the set of distributions, going from prior
to posterior, when working with lower and up-

1See also www.sipta.org

per probabilities. One such an approach, stay-
ing close to generalized Bayesian updating but
including an extra parameter to reduce the distri-
bution set upon updating, which allows some ad-
ditional control of the imprecision, was presented
in [7] and also included in an introduction of im-
precise Bayesian reliability analysis [21].

2 Imprecise reliability

Reliability analysis is an important application
area of statistics and probability theory in engi-
neering, with several specific features which of-
ten complicate application of standard methods.
Such features include data censoring, for example
due to maintenance activities, lack of knowledge
and information on dependence between random
quantities, for example if failures occur due to
competing risks, and required use of expert judge-
ments, for example when new or upgraded ver-
sions of units are used. While mathematical ap-
proaches for dealing with such issues have been
presented within the framework of statistics using
precise probabilities, the use of imprecise proba-
bility provides exciting new ways for dealing with
such challenges in reliability. One of the first ap-
proaches that generalized probability in reliabil-
ity was fuzzy reliability theory [6], but this suffers
from vagueness about axioms and rules for combi-
nation of information, and lack of clear interpre-
tation of the results. During the last two decades,
imprecise probability has received increasing at-
tention and interesting applications have been re-
ported, particularly also in the reliability and risk
literature. It is widely accepted that, by general-
izing precise probability theory in a mathemati-
cally sound manner, with clear axioms and inter-
pretations, this theory provides a better approach
to generalized uncertainty quantification then its
current alternatives.

An extensive introduction to imprecise reliabil-
ity, together with a discussion of many applica-
tions, has been presented in [43], while [23] pro-
vides a concise recent overview. As an example
of an imprecise reliability application, Fetz and
Tonon [33] consider bounds for the probability of
failure of a series system when no information is
available about dependence between failure prob-
abilities of different modes. They consider several
models, including random sets and p-boxes, and
they provide a detailed list of references to the
literature on such topics. They also discuss some
computational methods, which is an important
aspect of application of imprecise reliability to
medium or larger size practical problems. One
of the possible ways in which output from impre-
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cise probability methods can be useful is in the
study of sensivity of model outputs with respect
to variations in input parameters. An interesting
recent study [40] presents such an approach to a
large-scale modelling problem to assess reliability
in an aerospace engineering application, compar-
ing the use of classical probabilities and a variety
of imprecise probability methods.

Imprecise probabilistic approaches to statistics
are of great value to reliability problems. An
interesting recent development is combination of
imprecise Bayesian methods for some paramaters
with a generalized maximum likelihood approach
for other parameters in an inferential problem,
where the former can for example be used to ex-
plicitly deal with incomplete expert judgements
while the latter can be appropriate on aspects
of the problem for which suitable data are avail-
able. This has been explored for software reliabil-
ity growth models, using the maximum likelihood
approach for the temporal growth aspect together
with imprecise Bayesian methods for the parame-
ters modelling the stationary aspects of the model
[44].

3 Nonparametric predictive inference

Nonparametric predictive inference (NPI) is a
statistical method based on Hill’s assumption
A(n) [34], which gives a direct conditional prob-
ability for a future observable random quantity,
conditional on observed values of related random
quantities [3, 11]. Suppose that X1, . . . , Xn, Xn+1

are continuous and exchangeable random quan-
tities. Let the ordered observed values of
X1, . . . , Xn be denoted by x(1) < x(2) < . . . <
x(n) <∞, and let x(0) = −∞ and x(n+1) =∞ for
ease of notation, to be replaced by other known
bounds of support, such as x(0) = 0, if the ran-
dom quantities represent lifetimes. For a future
observation Xn+1, based on n observations, A(n)

[34] is, for j = 1, . . . , n + 1

P (Xn+1 ∈ (x(j−1), x(j))) =
1

n + 1

A(n) does not assume anything else and is a post-
data assumption related to finite exchangeabil-
ity. Hill [35] discusses A(n) in detail. Inferences
based on A(n) are predictive and nonparametric,
and can be considered suitable if there is hardly
any knowledge about the random quantity of in-
terest, other than the n observations, or if one
does not want to use such information, e.g. to
study effects of additional assumptions underly-
ing other statistical methods. A(n) is not suf-
ficient to derive precise probabilities for many

events of interest, but it provides optimal bounds
for probabilities for all events of interest involv-
ing Xn+1. These bounds are lower and upper
probabilities in the theories of imprecise probabil-
ity [45] and interval probability [48], and as such
they have strong consistency properties [3]. NPI
is a framework of statistical theory and meth-
ods that use these A(n)-based lower and upper
probabilities. Several variations of A(n) are used
for different inferences. For example, NPI has
been presented for Bernoulli data, multinomial
data and lifetime data with right-censored obser-
vations. NPI enables inferences for m ≥ 1 future
observations, with their interdependence explic-
itly taken into account, and based on sequential
assumptions A(n), . . . , A(n+m−1). NPI provides a
solution to some explicit goals formulated for ob-
jective (Bayesian) inference, which cannot be ob-
tained when using precise probabilities [11]. NPI
is exactly calibrated [37], which is a strong con-
sistency property in frequentist statistics, and it
never leads to results that are in conflict with in-
ferences based on empirical probabilities.

NPI for Bernoulli random quantities [9] is
based on a latent variable representation of
Bernoulli data as real-valued outcomes of an ex-
periment in which there is a completely unknown
threshold value, such that outcomes to one side of
the threshold are successes and to the other side
failures. The use of A(n) together with lower and
upper probabilities enables inference without a
prior distribution on the unobservable threshold
value, as is needed in Bayesian statistics where
this threshold value is typically represented by a
parameter. Suppose that there is a sequence of
n + m exchangeable Bernoulli trials, each with
‘success’ and ‘failure’ as possible outcomes, and
data consisting of s successes in n trials. Let Y n

1
denote the random number of successes in trials 1
to n, then a sufficient representation of the data
for NPI is Y n

1 = s, due to the assumed exchange-
ability of all trials. Let Y n+m

n+1 denote the ran-
dom number of successes in trials n+ 1 to n+m.
Let Rt = {r1, . . . , rt}, with 1 ≤ t ≤ m + 1 and
0 ≤ r1 < r2 < . . . < rt ≤ m, and, for ease of
notation, define

(
s+r0
s

)
= 0. Then the NPI upper

probability for the event Y n+m
n+1 ∈ Rt, given data

Y n
1 = s, for s ∈ {0, . . . , n}, is

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) =

(
n + m

n

)−1
×

t∑
j=1

[(
s + rj

s

)
−
(
s + rj−1

s

)](
n− s + m− rj

n− s

)
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The corresponding NPI lower probability is de-
rived via the conjugacy property P (Y n+m

n+1 ∈
Rt|Y n

1 = s) = 1 − P (Y n+m
n+1 ∈ Rc

t |Y n
1 = s) where

Rc
t = {0, 1, . . . ,m}\Rt.
For multinomial data, a latent variable rep-

resentation via segments of a probability wheel
has been presented, together with a correspond-
ing adaptation of A(n) [16]. For data including
right-censored observations, as often occur in life-
time data analysis, NPI is based on a variation of
A(n) which effectively uses a similar exchangeabil-
ity assumption for the future lifetime of a right-
censored unit at its moment of censoring [25].
This method provides an attractive predictive al-
ternative to the well-known Kaplan-Meier esti-
matoe (KME) for such data.

Many applications of NPI have been presented
in the literature, for a concise overview see [14]2.
These include solutions to problems in statis-
tics, operational research, reliability and risk. In
statistics, NPI provides frequentist solutions to
problems which do not depend on counterfactu-
als, which play a role in hypothesis testing and
are often criticized by opponents of frequentist
statistics. An important advantage of the use of
lower and upper probabilities is that one does not
need to add assumptions to data which one feels
are not justified. A nice example occurs in prece-
dence testing, where experiments to compare dif-
ferent groups may be terminated early in order
to save costs or time [32]. In such cases, the NPI
lower and upper probabilities are the sharpest
bounds corresponding to all possible orderings of
the not-fully observed data. NPI has been ap-
plied for comparisons of multiple groups of pro-
portions data [18], where the number m of future
observations per group plays an interesting role in
the inferences and where particularly interesting
situations occur in case of high-reliability applica-
tions with few, if any, failures per group [28]. Ef-
fectively, if m increases the inferences tend to be-
come more imprecise, while imprecision tends to
decrease if the number of observations in the data
set increases. Several recent applications of NPI
in the areas of reliability and risk are illustrated
next, an early discussion with some example ap-
plications of NPI in reliability was presented in
[19].

4 NPI in reliability and risk

Several aspects of data as typically occur in re-
liability and risk applications lead to interesting
inferences when lower and upper probabilities are
used, where NPI particularly shows such aspects

2see also www.npi-statistics.com

due to the limited influence of modelling assump-
tions. These aspects include data sets consisting
of relatively few observations and often including
right-censored observations, success-failure data
which actually contain few or even zero failures,
and the wish to draw inferences on failure modes
that have not yet been observed or have not even
been specified. Some of these topics are discussed
in this section, mostly via illustrative examples.
For details on the theoretical results and their
justifications, together with further examples and
more discussion of properties, we refer to the orig-
inal papers in which these approaches have been
presented.

4.1 System reliability

NPI for Bernoulli data has been implemented for
system reliability, with test information on com-
ponents of several types that are exchangeable
with those in the system [1, 31, 38]. This is illus-
trated in the following example, see [1] for further
discussion and presentation of general formulae
and their derivation.

Example 1
Consider a system consisting of 2 subsystems in
series configuration with components of 2 types,
A and B. Subsystem 1 is a 2-out-of-4 system (so
this functions if at least two of its components
function), with 2 type A components and 2 type
B components; subsystem 2 is a 1-out-of-4 sys-
tem, also with 2 components of each type. As-
sume that 2 components of type A were tested,
both of which functioned successfully, and also 2
components of type B were tested of which only
1 functioned successfully. The NPI lower prob-
ability for the event that this system functions
successfully is equal to 0.664. Suppose that, to
increase the system’s reliability by increasing re-
dundancy, extra components can be added to the
system, keeping the requirements that at least 2
components function in subsystem 1 and at least
1 in subsystem 2, but adding extra components to
subsystems. It is assumed that there are no cost
considerations, only the number of extra compo-
nents that can be added is restricted, and these
extra components can be of any type and added
to any of the two subsystems. Table 1 presents
the optimal allocation of 1 to 11 extra compo-
nents (‘Extra’ in the first column; m1

a denotes the
total number of components of type A in subsys-
tem 1, et cetera), in the sense of maximum result-
ing NPI lower probability for the event that the
system functions (denoted by P ).

If one extra component is allowed, it is opti-
mal to add a component of type A to subsystem
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Extra (m1
a,m

1
b ,m

2
a,m

2
b) P

1 (3,2,2,2) 0.775
2 (4,2,2,2) 0.827
3 (5,2,2,2) 0.856
4 (5,2,3,2) 0.882
5 (6,2,3,2) 0.901
6 (6,2,4,2) 0.914
7 (7,2,4,2) 0.972
8 (8,2,4,2) 0.936
9 (8,2,5,2) 0.944

10 (9,2,5,2) 0.950
11 (9,3,5,2) 0.956

Table 1: Example system reliability

1. This is fully as expected, since type A com-
ponents seem to be more reliable than type B
components based on the test results, and sub-
system 1 has less redundancy in the original sys-
tem than subsystem 2. With two further extra
components allowed, both would be chosen and
assigned similarly. However, if four extra compo-
nents are allowed, they would still all be of type
A but now one of these would be added to sub-
system 2. For up to 10 extra components, it is
optimal to choose them all to be of type A and
added to the subsystems as presented in Table
1. However, if an eleventh extra component is
allowed, a component of type B would be added
to subsystem 1. This illustrates an important as-
pect of NPI for system reliability, namely that
it takes explicitly into account that the reliabili-
ties of components of one type in the system are
statistically dependent, as a result of the limited
information from the test data. Effectively, if one
has the system with already 10 extra components
added in the optimal manner, it has become quite
a reliable system. If, however, this system does
not function, it implies that the components of
type A are far less reliable than had been ex-
pected following the test results. Hence, at this
point it is better to add a component of type B
than a further one of type A. This illustrates that
diversity in redundancy allocation can result di-
rectly from maximisation of reliability, and is due
to the limited knowledge about the reliability of
the components of different types.

4.2 System survival time

Recently, NPI has been presented for survival
time of coherent systems consisting of exchange-
able components [2], introducing the combination
of system signatures and lower and upper proba-
bilities. System signatures are a powerful tool for
qualifying reliability of such systems and can be
used to quantify aspects of system reliability such

as its failure time distribution [41]. Consider a
system consisting of m exchangeable components,
it could be said that such components are all ‘of
the same type’. Let the random failure time of
the system be TS , and let Tj:m be the j-th order
statistic of the m random component failure times
for j = 1, . . . ,m, with T1:m ≤ T2:m ≤ . . . ≤ Tm:m.
The system’s signature is defined to be the m-
vector q with j-th component

qj = P (TS = Tj:m)

so qj is the probability that the system failure
occurs at the moment of the j-th component fail-
ure. Assume that

∑m
j=1 qj = 1, so the system

functions if all components function, has failed
if all components have failed, and system failure
can only occur at times of component failures.
The survival function of the system failure time
can be derived by

P (TS > t) =

m∑
j=1

qjP (Tj:m > t) (1)

The NPI lower and upper survival functions for
systems with exchangeable components are de-
rived by generalizing expression (1) to lower and
upper probabilities [2]. Suppose that in a test of n
components, exchangeable with those in the sys-
tem considered, the observed failure times were
t1 < t2 < . . . < tn. For ease of notation, define
t0 = 0 and tn+1 =∞. These n observations parti-
tion the non-negative real-line into n+1 intervals
Ii = (ti−1, ti) for i = 1, . . . , n + 1. Consider relia-
bility of a system with m components, so interest
is in the m failure times of those components,
say T1, . . . , Tm. The test data and T1, . . . , Tm are
linked via repeated use of the assumption A(n)

[3, 11, 20]. Let Sj = #{Tl ∈ Ii, l = 1, . . . ,m},
then

P (
n+1⋂
j=1

{Sj = sj}) =

(
n + m

n

)−1
for all (s1, . . . , sn+1) with sj non-negative integers

and
∑n+1

j=1 sj = m. For any event involving the m
future observations, the number of such orderings
for which this event holds can be counted. The
NPI lower probability for the event of interest is
derived by counting all orderings for which this
event has to hold, while the corresponding upper
probability is derived by counting all orderings
for which this event can hold [20]. The order
statistics of the m future observations T1, . . . , Tm

are the T1:m ≤ T2:m ≤ . . . ≤ Tm:m as introduced
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before. The following probabilities for Tj:m, for
j = 1, . . . ,m, are derived by counting the relevant
orderings, and hold for i = 1, . . . , n + 1,

P (Tj:m ∈ Ii) =

(
i + j − 2

i− 1

)(
n− i + 1 + m− j

n− i + 1

)(
n + m

n

)−1
(2)

For this event Tj:m ∈ Ii NPI provides a precise

probability, as each of the
(
n+m
n

)
equally likely

orderings of n test observations and m future ob-
servations has the j-th ordered future observa-
tion in precisely one interval Ii. The probabil-
ities (2) straightforwardly lead to the following
NPI lower and upper survival functions for Tj:m,
these are the sharpest bounds for the probability
of the event Tj:m > t that can be justified with-
out further assumptions. The NPI lower survival
function for Tj:m is, for t ∈ (ti−1, ti],

STj:m
(t) = P (Tj:m > t) =

n+1∑
l=i+1

P (Tj:m ∈ Il)

and the corresponding NPI upper survival func-
tion is, for t ∈ [ti−1, ti),

STj:m(t) = P (Tj:m > t) =

n+1∑
l=i

P (Tj:m ∈ Il)

At observed failure times ti there is no impreci-
sion in the NPI lower and upper survival func-
tions, that is STj:m

(ti) = STj:m(ti) for i =

1, . . . , n, while STj:m
(0) = STj:m(0) = 1. Beyond

the largest observed component failure time in
the test, the NPI lower survival function is equal
to zero but the NPI upper survival function re-
mains positive,

STj:m
(t) = 0

STj:m(t) =
m∏
l=j

l

n + l
> 0 for t > tn

This reflects that there is no evidence in favour
of such components, and hence the system, sur-
viving past time tn (this is reflected by the lower
survival function being equal to zero), but the ev-
idence against this is limited as there are only n
observations thus far (this is reflected by the up-
per survival function being a positive decreasing
function of n).

Combining NPI and system signatures, the
NPI lower and upper survival functions for the
failure time TS of a coherent system consisting
of m exchangeable components, with the system
structure represented by signature q, are

STS
(t) =

m∑
j=1

qjP (Tj:m > t) (3)

STS
(t) =

m∑
j=1

qjP (Tj:m > t) (4)

It should be emphasized that this generalization
of (1) is non-trivial, as the right-hand sides of (3)
and (4) both involve m optima involving related
random quantities and the equalities in (3) and
(4) only hold if all the optima can be attained
simultaneously; this is the case in NPI [2] but
not generally in imprecise probability.

Example 2.
There are six coherent systems with m = 4 ex-
changeable components. Suppose that n = 4
components exchangeable with those in such a
system were tested, leading to ordered failure
times t1 < t2 < t3 < t4, which create the parti-
tion I1, . . . , I5 of the positive real-line. Table 4.2
presents the NPI lower and upper survival func-
tions for TS , from (3) and (4), for each of these
six systems, with the signatures as given.

q (1, 0, 0, 0) (0, 0, 0, 1) (0, 1
3 ,

2
3 , 0)

i STS
STS

STS
STS

STS
STS

1 0.50 1 0.99 1 0.88 1
2 0.21 0.50 0.93 0.99 0.67 0.88
3 0.07 0.21 0.79 0.93 0.41 0.67
4 0.01 0.07 0.50 0.79 0.17 0.41
5 0 0.01 0 0.50 0 0.17

q ( 1
4 ,

1
4 ,

1
2 , 0) (0, 2

3 ,
1
3 , 0) (0, 1

2 ,
1
4 ,

1
4 )

i STS
STS

STS
STS

STS
STS

1 0.79 1 0.83 1 0.87 1
2 0.56 0.79 0.59 0.83 0.67 0.87
3 0.33 0.56 0.33 0.59 0.44 0.67
4 0.13 0.33 0.12 0.33 0.21 0.44
5 0 0.13 0 0.12 0 0.21

Table 2: STS
(t) and STS

(t) for t ∈ Ii

These results illustrate the NPI lower and up-
per survival functions, and can be used to com-
pare the reliabilities of these six systems, with
of course the parallel system with signature q =
(0, 0, 0, 1) being the most reliable and the series
system with signature q = (1, 0, 0, 0) the least
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reliable. The NPI approach combined with sig-
natures can also be used to compare failure times
of different systems, as presented in [2].

4.3 Competing risks

In reliability and survival analysis, data often
contain right-censored observations, for exam-
ple due to failures caused by different failure
modes, also called ‘competing risks’. The NPI
approach for competing risks has been presented
recently [26, 39], it requires the introduction of
the NPI lower and upper survival function in
case of data containing right-censored observa-
tions [25, 39]. These are based on the assumption
rc-A(n) [25], which effectively applies A(n) to the
unobserved residual time beyond the moment of
right-censoring for a censored unit. Suppose that
there are n observations consisting of u failure
times, x1 < x2 < . . . < xu, and n − u right-
censored observations, c1 < c2 < . . . < cn−u. Let
x0 = 0 and xu+1 = ∞. Suppose further that
there are si right-censored observations in the in-
terval (xi, xi+1), denoted by ci1 < ci2 < . . . < cisi ,

so
∑u

i=0 si = n − u. Let ti0 = xi for i = 0, u,

tia = cia for a = 1, . . . , si, and tisi+1 = ti+1
0 = xi+1

for i = 0, 1, . . . , u − 1. The NPI lower and up-
per survival functions for the failure time Xn+1

of the next unit are denoted by S(t) and S(t), re-
spectively, and are as follows [19, 25, 39]. For t ∈
[tia, t

i
a+1) with i = 0, 1, . . . , u and a = 0, 1, . . . , si,

S(t) =
1

n + 1
ñtia

∏
{r:cr<tia}

ñcr + 1

ñcr

and for t ∈ [xi, xi+1) with i = 0, 1, . . . , u,

S(t) =
1

n + 1
ñxi

∏
{r:cr<xi}

ñcr + 1

ñcr

It should be mentioned that these NPI lower
and upper survival functions always bound
the Kaplan-Meier estimate, which is the well-
known nonparametric maximum likelihood esti-
mate based on such data. The NPI upper sur-
vival function only decreases at observed failure
times but the NPI lower survival function also
decreases at right-censoring times, by a smaller
step than at observed failure times. This is in line
with intuition, as the lower survival function re-
flects the evidence in favour of surviving, which is
reduced by an observed failure but also by a right-
censoring, as beyond such a time the evidence on
survival comes from fewer units. The upper sur-
vival function reflects the evidence against surviv-
ing, which is clearly stronger from the moment

of an observed failure time, but is not affected
by a right-censoring as this holds no evidence in
favour of the failure event. Beyond the largest
observation, both if this is a failure time or a
right-censored time, the lower survival function
is equal to zero, reflecting that there is no evin-
dence in the data that supports surviving past
later times, but the upper survival function re-
mains positive which reflects that larger observa-
tions cannot be excluded on the basis of the data
alone.

In a situation with competing risks [26, 39],
which are assumed to be independent, NPI lower
and upper survival functions are derived condi-
tional on each failure mode, where failures due
to other failure modes are right-censored obser-
vations. The assumed independence of the com-
peting risks allow the overall NPI lower and up-
per survival functions for the units considered, af-
fected by all competing risks, to be calculated by
taking the products of all the corresponding NPI
lower and upper survival functions conditioned on
the failure modes. A question particularly con-
sidered in [39] is which failure mode will cause
the next unit to fail, which is illustrated in the
following example [26]. This also shows an im-
portant advantage of the NPI approach, namely
it can include unobserved and even (any number
of) unknown failure modes in the analysis.

Example 3.
The data in Table 3 are a subset of a well-known
data set from the literature [36] that was also
used in [26, 39]. Twelve units of a new model of
a small electrical appliance were tested, the life-
time observation per unit consists of the number
of completed cycles of use until the unit failed.
There were 18 possible failure modes identified,
the specific failure mode (FM) that caused the
unit to fail is given in the table.

# cycles FM # cycles FM # cycles FM
381 6 1594 2 2471 9
708 6 1925 9 2702 10
958 10 2327 6 2831 2
1167 9 2451 5 3112 9

Table 3: Failure data for electrical appliances

The two most frequently occurring failure
modes in these data are FM9 and FM6, which
caused 4 and 3 units to fail, respectively. The
event of interest is that the next unit, say unit
13, will fail due to a specific failure mode, as-
suming it would undergo the same test and its
number of completed cycles would be exchange-
able with these numbers for the 12 units reported.
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Six cases are presented, (A) to (F), each involv-
ing a different grouping of the failure modes in 2,
3 or 4 re-defined failure modes, the correspond-
ing NPI lower and upper probabilities are pre-
sented in Table 4. The term OFM is introduced
for ‘other failure modes’ grouped into one sin-
gle re-defined failure mode. For example in case
(A), OFM is considered to be a single new fail-
ure mode containing all originally defined failure
modes except failure mode 9. For each case the
sums of the lower probabilities and of the upper
probabilities are also given, these illustrate that
they are constant for a fixed number of re-defined
failure modes. For further discussion of proper-
ties of these inferences we refer to [26], where also
the corresponding NPI lower and upper survival
functions are investigated and illustrated.

P P P P
(A) (B)
9 0.237 0.481 6 0.208 0.452

OFM 0.519 0.764 OFM 0.548 0.793
0.755 1.245 0.755 1.245

(C) (D)
9 0.190 0.481 9 0.190 0.481
6 0.187 0.452 3 0 0.245

OFM 0.255 0.556 OFM 0.442 0.764
0.632 1.489 0.632 1.489

(E) (F)
9 0.157 0.481 3 0 0.245
6 0.168 0.452 4 0 0.245
3 0 0.245 7 0 0.245

OFM 0.212 0.556 OFM 0.536 1
0.536 1.734 0.536 1.734

Table 4: Results Example 3

In case (A) all failure modes except FM9 are
together re-defined as one failure mode (OFM).
Suppose that there may be an additional un-
known failure mode that may cause the units to
fail, but this has not happened for the tested
units. To illustrate the effect of such a possi-
ble further failure mode, consider case (D) where
FM3 has been defined although it had not led
to a failure for the tested units. Including such
an unobserved failure mode has led to decrease
of the lower probabilities for the event that unit
13 will fail due to FM9 or due to OFM, which
follows by comparison of cases (A) and (D) and
can also be seen in cases (C) and (E), while the
corresponding upper probabilities have remained
the same. This reflects that the unknown fail-
ure mode could possibly lead to the next failure,
which would make the other failure modes less
likely causes for it, but it cannot be excluded that

this unknown failure mode may not have any ef-
fect at all, as reflected by those unchanged upper
probabilities. Case (F) shows that multiple un-
observed failure modes can be considered, each
of these has lower probability 0 and the same
positive upper probability for the event that it
causes unit 13 to fail. Any number of such un-
observed failure modes could be included, they
would all have the same lower and upper prob-
abilities. This uses the sub-additivity of upper
probabilities to great advantage [45, 47, 48]. The
upper probability for OFM in Case (F) is one, re-
flecting that all units observed failed due to one
of the failure modes in OFM.

4.4 Unobserved failure modes

While NPI for competing risks [26, 39] enables
inference on unobserved or even unknown failure
modes, it does not quantify how likely such fail-
ure modes are to occur. The NPI approach has
also been presented for multinomial data [15, 16],
which explicitly enables inference on the event
that the next observation will fall into either a de-
fined but not yet observed category or even into
an undefined category, which can be interpreted
as an ‘unknown unknown’ event. This approach
was presented explicitly for prediction of unob-
served failure modes in [13]. Typically, if out-
come categories have not occurred yet, the NPI
lower probability of the next observation falling
in such a category is zero, but the corresponding
NPI upper probability is positive and depends on
whether or not the category is explicitly defined,
on the total number of categories or whether this
number is unknown, and on the number of cate-
gories observed so far. Such NPI upper probabil-
ities can be used to support cautious decisions,
which are often deemed attractive in reliability
and risk analysis. The following example [13] il-
lustrates this approach.

Example 4.
Suppose that a database contains detailed infor-
mation on failures experienced during warranty
periods of a particular product. Currently 200
failures have been recorded, with 5 different fail-
ure modes specified. The producer is interested in
the event that the next recorded failure of such
a product during its warranty period is caused
by another failure mode than these 5 already
recorded. First assume that there is no clear as-
sumption or knowledge about the number of pos-
sible failure modes. Suppose that interest is in
the event that the next reported failure is caused
by any as yet unseen failure mode, represented by
X201 ∈ UN , then the NPI-based upper probabil-
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ity for this event is equal to 5/200. If, however,
the producer has actually specified two further
possible failure modes, which have not yet been
recorded so far, and interest is in the event that
the next failure mode will be one of these two,
then this method gives a different answer. In this
case, let these two failure modes be denoted by
DN1 and DN2, then the NPI-based upper prob-
ability for the event X201 ∈ DN1 ∪DN2 is equal
to 2/200. The NPI-based lower probabilities for
both these events are 0, reflecting that there is
no actual evidence in the data for these events to
occur.

Now suppose that these 200 failures were in-
stead caused by 25 different failure modes, not in-
cluding the defined DN1 and DN2. Then the up-
per probability for X201 ∈ UN changes to 25/200,
but the upper probability for X201 ∈ DN1∪DN2

remains 2/200. It is in line with intuition that
the changed data affect this first upper probabil-
ity, as the fact that more failure modes have been
recorded suggests that there may be more dif-
ferent failure modes that can cause this product
to fail (no knowledge is assumed on the number
of possible failure modes). For the second event
considered here, the reasoning is somewhat dif-
ferent, as effectively interest is in two specific, as
yet unseen, failure modes, and there is no actual
difference in the data available that is naturally
suggesting that either of these two failure modes
has become more likely, as in both cases there is
actually no real evidence that they can lead to
failures during the warranty period.

Suppose now that the producer is absolutely
certain that at most 40 different failure modes
exist for this product. This would not affect the
above upper probabilities in case so far only 5
failure modes had been observed, but in the case
of 25 observed failure modes, it reduces the upper
probability for the event X201 ∈ UN to 15/200,
reflecting that there are only 15 possible failure
modes not yet recorded. Assuming that DN1 and
DN2 are among those 15 failure modes, the upper
probability for X201 ∈ DN1∪DN2 remains 2/200.
Clearly, if there had been 40 well defined failure
modes, of which 25 had already caused failures
and with no other failure modes possible, then
the 15 which had not yet been recorded could be
denoted by DNi for i = 1, . . . , 15, in which case

P (X201 ∈ UN) = P (X201 ∈
15⋃
i=1

DNi) =
15

200

4.5 Further applications

NPI provides an attractive framework for deci-
sion support in a wide range of problems where
the focus is naturally on a future observation.
There are several further examples of applica-
tions of NPI in reliability and risk that are of in-
terest in themselves, for the further applications
that can be considered using similar approaches,
and for the related research opportunities. Pow-
erful methods for replacement decisions of tech-
nical units have been presented which are fully
adaptive to process data and in simulation stud-
ies have shown to perform very well [27, 28, 30].
As NPI is particularly attractive in situations
with zero failures, its applications for reliability
demonstration [17] and probabilistic safety as-
sessment [12] provide interesting alternatives to
classical approaches. It is worth noting as well
that NPI can also deal with grouped data [24] as
often occur in real-world applications, for exam-
ple if lifetime and failure data are collected only
on a monthly basis for non-critical hardware.

5 Concluding remarks

Imprecise probability and its applications in sta-
tistical inference and decision support offer a wide
range of research challenges. On foundations, key
aspects such as updating have not yet been fully
explored, and different approaches have differ-
ent conditioning rules. The relation between im-
precision and information requires further study,
and many of the most frequently used statisti-
cal methods (such as complex regression mod-
els) have not yet been fully generalized to deal
with imprecise probability. In cases where gen-
eralizations are easily found, it may be unclear
which of many possible approaches is most suit-
able. Of course, early developments of new the-
oretic frameworks tend to include illustrative ap-
plications to mostly text-book style problems.
The next stage required towards widely applica-
ble methods involves upscaling, where in partic-
ular computational aspects provide many chal-
lenges. Even methods such as simulation, mostly
straightforward with precise probabilities, be-
come non-trivial with lower and upper probabili-
ties.

For applications which require the use of sub-
jective information, elicitation of expert judge-
ments is less demanding when lower and upper
probabilities are used, but while practical aspects
of elicitation have been widely studied this has,
thus far, only included very few studies involving
lower and upper probabilities. In decision mak-
ing, algorithms to find optimal solutions need to
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be developed further and implemented for large-
scale applications. As many problems have a se-
quential nature, ways of representing sequential
solutions efficiently also need to be developed, the
more so as classical techniques such as backward
induction and dynamic programming often can-
not be extended directly. All relevant aspects of
theory and application of imprecise probabilities
will be addressed in an introductory book that is
under development [4].

Imprecise reliability is a relatively new area of
research, with methods presented that are in-
spired by practical problems but that are not
yet suitable for applications of substantial size.
The main challenges are in upscaling the meth-
ods to become useful for practical problems, to-
gether with aspects of implementation which in-
clude consideration of elicitation, model choice
and computation.

The models for imprecise reliability that have
been presented so far are still pretty basic. Gener-
ally, imprecise approaches can be found that gen-
eralize the established methods in varying ways,
so in addition to developing new methods one
must find ways to decide on how useful they are,
which requires careful consideration of fundamen-
tal aspects of uncertainty and information. Hy-
brid methods, which combine imprecise models
where useful to model indeterminacy with precise
models where possible due to sufficient data or in-
formation, provide exciting opportunities for re-
search, with issues that must be addressed includ-
ing interpretation of results and choice of models
and methods.

Development of NPI is gathering momentum,
inferential problems for which NPI solutions have
recently been presented or are being developed in-
clude aspects of medical diagnosis with the use of
ROC curves, robust classification, quality control
and acceptance sampling. Main research chal-
lenges for NPI include its generalization for mul-
tidimensional data, which is similarly challeng-
ing for NPI as for general nonparametric meth-
ods due to the lack of a natural ordering of the
data. NPI theory and methods that enable in-
formation from covariates to be taken into ac-
count also provide interesting and challenging re-
search opportunities. A research monograph in-
troducing NPI theory, methods and applications
is currently in development, further information
is available from www.npi-statistics.com.
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