PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real-time optical demultiplexing with the chirped pulses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A scheme for real-time optical demultiplexing is proposed by utilizing the time-broadened and linearly chirped pulses instead of the conventional mode-locked pulses. The copies of the optical-time-division-multiplexed signal are acquired through a dual-pump parametric gate and used as the parametric multicast block. Simulation results show that the demultiplexing from 160 Gb/s down to sixteen 10 Gb/s tributaries can be achieved only by using a sampling source of 10 GHz. The proposed scheme can effectively reduce the complexity of parallel processing, and find important applications in the high-speed all-optical signal processing.
Czasopismo
Rocznik
Strony
621--632
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 72 (BUPT), 100876, Beijing, China
autor
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 72 (BUPT), 100876, Beijing, China
autor
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 72 (BUPT), 100876, Beijing, China
  • Photonics Research Center, Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
autor
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 72 (BUPT), 100876, Beijing, China
autor
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 72 (BUPT), 100876, Beijing, China
autor
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 72 (BUPT), 100876, Beijing, China
autor
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 72 (BUPT), 100876, Beijing, China
autor
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 72 (BUPT), 100876, Beijing, China
autor
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 72 (BUPT), 100876, Beijing, China
autor
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 72 (BUPT), 100876, Beijing, China
Bibliografia
  • [1] BHUSHAN A.S., COPPINGER F., JALALI B., Time-stretched analogue-to-digital conversion, Electronics Letters 34(9), 1998, pp. 839–841.
  • [2] HAO CHI, YING CHEN, YUAN MEI, XIAOFENG JIN, SHILIE ZHENG, XIANMIN ZHANG, Microwave spectrum sensing based on photonic time stretch and compressive sampling, Optics Letters 38(2), 2013, pp. 136–138.
  • [3] HAO NAN, YUANTAO GU, HONGMING ZHANG, Optical analog-to-digital conversion system based on compressive sampling, IEEE Photonics Technology Letters 23(2), 2011, pp. 67–69.
  • [4] AIROLA M.B., O’CONNOR S.R., DENNIS M.L., CLARK T.R., Experimental demonstration of a photonic analog-to-digital converter architecture with pseudorandom sampling, IEEE Photonics Technology Letters 20(24), 2008, pp. 2171–2173.
  • [5] ZHE KANG, JINHUI YUAN, QIANG WU, TAO WANG, SHA LI, XINZHU SANG, CHONGXIU YU, FARRELL G., Lumped time-delay compensation scheme for coding synchronization in the nonlinear spectral quantization-based all-optical analog-to-digital conversion, IEEE Photonics Journal 5(6), 2013, article ID 7201109.
  • [6] KANG ZHE, YUAN JIN-HUI, LI SHA, XIE SONG-LIN, YAN BIN-BIN, SANG XIN-ZHU, YU CHONG-XIU, Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques, Chinese Physics B 22(11), 2013, article ID 114211.
  • [7] DINGKANG TANG, JIANGUO ZHANG, YUANSHAN LIU, WEI ZHAO, Ultrashort optical pulse monitoring using asynchronous optical sampling technique in highly nonlinear fiber, Chinese Optics Letters 8(7), 2010, pp. 630–633.
  • [8] WESTLUND M., ANDREKSON P.A., SUNNERUD H., HANSRYD J., JIE LI, High-performance optical-fiber-nonlinearity-based optical waveform monitoring, Journal of Lightwave Technology 23(6), 2005, pp. 2012–2022.
  • [9] HEDEKVIST P.O., KARLSSON M., ANDREKSON P.A., Fiber four-wave mixing demultiplexing with inherent parametric amplification, Journal of Lightwave Technology 15(11), 1997, pp. 2051–2058.
  • [10] JANSEN S.L., HEID M., SPALTER S., MEISSNER E., WEISKE C.-J., SCHOPFLIN A., KHOE D., DE WAARDT H., Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA, Electronics Letters 38(17), 2002, pp. 978–980.
  • [11] RAU L., WEI WANG, OLSSON B.-E., YIJEN CHIU, HSU-FENG CHOU, BLUMENTHAL D.J., BOWERS J.E., Simultaneous all-optical demultiplexing of a 40-Gb/s signal to 4 × 10 Gb/s WDM channel’s using an ultrafast fiber wavelength converter, IEEE Photonics Technology Letters 14(12), 2002, pp. 1725–1727.
  • [12] PALUSHANI E., HANSEN MULVAD H.C., GALILI M., HAO HU, OXENLOWE L.K., CLAUSEN A.T., JEPPESEN P., OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation, IEEE Journal of Selected Topics in Quantum Electronics 18(2), 2012, pp. 681–688.
  • [13] WIBERG A.O.J., BRES C.-S., WINDMILLER J.R., ALIC N., RADIC S., RZ pulse source for optical time division multiplexing based on self-phase modulation and four wave mixing, 2009 IEEE/LEOS Winter Topicals Meeting Series, 2009, pp. 233–234.
  • [14] BRES C.-S., WIBERG A.O.J., KUO B.P.-P., CHAVEZ-BOGGIO J.M., MARKI C.F., ALIC N., RADIC S., Optical demultiplexing of 320 Gb/s to 8 × 40 Gb/s in single parametric gate, Journal of Lightwave Technology 28(4), 2010, pp. 434–442.
  • [15] BRES C.-S., WIBERG A.O.J., KUO B.P.-P., CHAVEZ-BOGGIO J.M., MARKI C.F., ALIC N., RADIC S., Single-gate 320-to-8×40 Gb/s demultiplexing, Optical Fiber Communication Conference, Optical Society of America, 2009, article ID PDPA4.
  • [16] BRES C.-S., WIBERG A.O.J., KUO B.P.-P., ALIC N., RADIC S., Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier, IEEE Photonics Technology Letters 21(14), 2009, pp. 1002–1004.
  • [17] BRES C.-S., ALIC N., GNAUCK A.H., JOPSON R.M., RADIC S., Multicast parametric synchronous sampling, IEEE Photonics Technology Letters 20(14), 2008, pp. 1222–1224.
  • [18] XIANTING ZHANG, ZHE KANG, JINHUI YUAN, QIANG WU, FARRELL G., XINZHU SANG, CHONGXIU YU, Scheme for multicast parametric synchronous optical sampling, Optical Engineering 53(5), 2014, article ID 056102.
  • [19] BRES C.-S., WIBERG A.O.J., WINDMILLER J.R., ALIC N., RADIC S., Parametric multicasting of 320 Gb/s OTDM data, 2009 IEEE/LEOS Winter Topicals Meeting Series, 2009, pp. 193–194.
  • [20] MCKINSTRIE C.J., RADIC S., CHRAPLYVY A.R., Parametric amplifiers driven by two pump waves, IEEE Journal of Selected Topics in Quantum Electronics 8(3), 2002, pp. 538–547.
  • [21] SALEM R., FOSTER M.A., TURNER-FOSTER A.C., GERAGHTY D.F., LIPSON M., GAETA A.L., High-speed optical sampling using a silicon-chip temporal magnifier, Optics Express 17(6), 2009, pp. 4324–4329.
  • [22] AGRAWAL G.P., Nonlinear Fiber Optics, Academic Press, 2007.
  • [23] SALEM R., FOSTER M.A., TURNER A.C., GERAGHTY D.F., LIPSON M., GAETA A.L., Optical time lens based on four-wave mixing on a silicon chip, Optics Letters 33(10), 2008, pp. 1047–1049.
  • [24] HANSEN MULVAD H.C., PALUSHANI E., HAO HU, HUA JI, LILLIEHOLM M., GALILI M., CLAUSEN A.T., MINHAO PU, YVIND K., HVAM J.M., JEPPESEN P., OXENLØWE L.K., Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire, Optics Express 19(26), 2011, pp. B825–B835.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53809c37-8d1a-452d-9164-c0254e5a4eaf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.