PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementation of Industry 4.0 Techniques in Lean Production Technology: A Literature Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lean thinking and Industry 4.0 have been broadly investigated in recent years in intelligent manufacturing. Lean Production is still one of the most efficient industrial solutions in business and research, despite being implemented for a long time. On the other hand, Industry 4.0 has been introduced referring to the fourth industrial revolution. This study aims to analyze the combination of both Industry 4.0 and Lean production practices through a systematic literature review from a Lean Automation perspective. In this field, 189 articles are examined using VOSviewer for cluster analysis. Then, a more detailed analysis is provided to explore how Industry 4.0 and Lean techniques are integrated from a practical perspective. Results highlighted Big Data Analysis and Value Stream Mapping as the most common techniques, also emphasizing a growing trend toward new publications. Nevertheless, few practical applications are identified in the literature highlighting six gaps in the correlation of LA practices.
Twórcy
  • Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università P litecnica Delle Marche, Italy
  • Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica Delle Marche, Italy
  • Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica Delle Marche, Italy
  • Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica Delle Marche, Italy
Bibliografia
  • Abed A.M. (2016), Adjust Jidoka Occupational Fatigue Factors to Reduce Idle Times and Defects Using Data Mining, The Egyptian International Journal of Engineering Sciences and Technology.
  • Agostinho V. and Baldo C.R. (2021), Assessment of the impact of Industry 4.0 on the skills of Lean professionals, Procedia CIRP, Vol. 96, pp. 225–229. DOI: 10.1016/j.procir.2021.01.079.
  • AlShebli B., Alibasic A., Woon W.L., and Svetinovic D. (2017), Kanban-based framework for analysis of heterogeneous academic data, 25th Telecommunication Forum (TELFOR), pp. 1–4.
  • Antomarioni S., Lucantoni L., Ciarapica F.E., and Bevilacqua M. (2021), Data-driven decision support system for managing item allocation in an ASRS: A framework development and a case study, Expert Systems with Applications, Vol. 185. DOI: 10.1016/J.ESWA.2021.115622.
  • Bait S., Pietro A. Di, and Schiraldi M.M. (2020), Waste reduction in production processes through simulation and VSM, Sustainability, No. 8, Vol. 12. DOI: 10.3390/SU12083291.
  • Barring M., Nafors D., Henriksen D., Johansson B., and Larsson U. (2017), A VSM approach to support data collection for a simulation model, Proceedings of the 2017 Winter Simulation Conference, pp. 3928–3939.
  • Bekar E.T., Skoogh A., Cetin N., and Siray O. (2018), Prediction of Industry 4.0’s Impact on Total Productive Maintenance Using a Real Manufacturing Case, Proceedings of the International Symposium for Production Research.
  • Bevilacqua M., Ciarapica F.E., and De Sanctis I. (2017), Relationships between Italian companies’ operational characteristics and business growth in high and low lean performers, Journal of Manufacturing Technology Management, No. 2, Vol. 28, pp. 250–274. DOI: 10.1108/JMTM-02-2016-0024.
  • Bevilacqua M., Ciarapica F.E. and Mazzuto G. (2018), Fuzzy cognitive maps for adverse drug event risk management, Safety Science, Vol. 102. DOI: 10.1016/j.ssci.2017.10.022.
  • Bevilacqua M., Ciarapica F.E., and Marcucci G. (2019), Supply Chain Resilience research trends: a literature overview, IFAC PapersOnLine, No. 13, Vol. 52.
  • Bhosekar A.S., Gilstrap K., Isik T., Eksioglu S.D., and Allen R. (2018), Simulation optimization of automated guided vehicle system in a health care facility, IIE Annual Conference. Proceedings; Norcross.
  • Bittencourt V.L., Alves A.C., and Leăo C.P. (2019), Lean Thinking contributions for Industry 4.0: A systematic literature review, IFAC-PapersOnLine, No. 13, Vol. 52, pp. 904–909. DOI: 10.1016/j.ifacol.2019.11.310.
  • Bittencourt, V.L., Alves, A.C., and Leăo C.P. (2021), Industry 4.0 triggered by Lean Thinking: insights from a systematic literature review, International Journal of Production Research, Vol. 59.
  • Bun P., Rewers P., and Gorski F. (2018), Augmneted reality in production management classes, Proceedings of 4th International Conference of the Virtual and Augmented Reality in Education, VARE 2018, pp. 72–77.
  • Cagnetti C., Gallo T., Silvestri C., and Ruggieri A. (2021), Lean production and Industry 4.0: Strategy/management or technique/implementation? A systematic literature review, Procedia Computer Science, Vol. 180, pp. 404–413. DOI: 10.1016/J.PROCS.2021.01.256.
  • Cerna F., Ubalde R., Rodriguez C., Sotomayor J., and Yucra D. (2020), Automation psychological assessments with cloud computing, Journal of Critical Reviews, No. 15, Vol. 7.
  • Chen R.Y. (2017), An intelligent value stream-based approach to collaboration of food traceability cyber physical system by fog computing, Food Control, Vol. 71, pp. 124–136. DOI: 10.1016/j.foodcont.2016.06.042.
  • Dănuţ-Sorin I.R., Opran C.G., and Lamanna G. (2021), Lean 4.0 Dynamic Tools for Polymeric Products Manufacturing in Industry 4.0, Progress on Polymers and Composites Products and Manufacturing Technologies, No. 1, Vol. 396.
  • Gallo T., Cagnetti Ch., Silvestri C., and Ruggieri A. (2021), Industry 4.0 tools in lean production: A systematic literature review, Procedia Computer Science, Vol. 180, pp. 394–403. DOI: 10.1016/j.procs.2021.01.255.
  • Hongfei G., Minshi C., Khalgui M., Ting Q., Siming W., and Jianke L. (2021), A digital twin-based flexible cellular manufacturing for optimization of air conditioner line, Journal of Manufacturing Systems, Vol. 58, Part B.
  • Husár J., Knapčíková L., and Hrehová S. (2021), Augmented Reality as a Tool of Increasing the Efficiency of RFID Technology, (eds) Future Access Enablers for Ubiquitous and Intelligent Infrastructures. FABULOUS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol 382, Springer, Cham.
  • Ilangakoon R., Weerabahu T.S., Samaranayake S.K., and Wickramarachchi P. (2021), Adoption of Industry 4.0 and lean concepts in hospitals for healthcare operational performance improvement, International Journal of Productivity and Performance Management, No. 6, Vol. 71, pp. 2188–2213.
  • Jia X., Feng Q., Fan T., and Lei Q. (2012), RFID technology and its applications in Internet of Things (IoT), in 2012 2nd International Conference on Consumer Electronics, Communications and Networks, CECNet 2012 – Proceedings, pp. 1282–1285. DOI: 10.1109/CECNet.2012.6201508.
  • Kang L., Wang S., and Li C. (2016), Cloud manufacturing service-oriented platform for group enterprises, Smart Innovation, Systems and Technologies, Vol. 52.
  • Kassem B.P.A. (2019), The interaction between lean production and industry 4.0: Mapping the current state of literature and highlighting gaps, in XXIV Summer School “Francesco Turco” – Industrial Systems Engineering, pp. 123–128.
  • Kataoka T. (2020), A multi-period mixed integer programming model on reconfigurable manufacturing cells, Procedia Manufacturing, Vol. 43.
  • Kolberg D. and Zühlke D. (2015), Lean Automation enabled by Industry 4.0 Technologies, IFACPapersOnLine, No. 3, Vol. 28, pp. 1870–1875. DOI: 10.1016/j.ifacol.2015.06.359.
  • Kumar R., Singh S.P., and Lamba K. (2018), Sustainable robust layout using Big Data approach: A key towards industry 4.0, Journal of Cleaner Production, Vol. 204, pp. 643–659. DOI: 10.1016/j.jclepro.2018.08.327.
  • Kurdve M., Persson K.-E., Widfeldt M., Berglund J., and Drott A. (2020), Lead-Time Effect Comparison of Additive Manufacturing with Conventional Alternatives, Advances in Transdisciplinary Engineering, Vol. 13, pp. 672–679.
  • Lisowski M. and Bednarek M. (2019), Lean manufacturing and logistics distribution 3.0, New Challenges in Change Management.
  • Loan B., Huyen N., Giang T., and Giang N. (2020), Application auto guided vehicle (AGV) in warehouse operation: case study fast moving consumer goods (FMCG) factory.
  • Ma J., Wang Q., and Zhao Z. (2017), SLAE–CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies, Sensors, No. 7, Vol. 17.
  • Marcucci G., Antomarioni S., Ciarapica F.E., and Bevilacqua M. (2021), The impact of Operations and IT-related Industry 4.0 key technologies on organizational resilience, Production Planning and Control, June 2021. DOI: 10.1080/09537287.2021.1874702.
  • Matsuo K. and Barolli L. (2020), IoT sensors management system using Agile-Kanban and its application for weather measurement and electric wheelchair management, International Journal of Web Information Systems, No. 3, Vol. 16 pp. 281–293.
  • Mayr A., Weigelt M., Kühl A., Grimm S., Erll A., Potzel M., and Franke J. (2018), Lean 4.0-A conceptual conjunction of lean management and Industry 4.0, Procedia CIRP, Vol. 72, pp. 622–628, 2018. DOI: 10.1016/j.procir.2018.03.292.
  • Merino M.N., Marin J.M.M., Fuentes J.M., and Jurado P.J.M. (2020), Information and digital technologies of Industry 4.0 and Lean supply chain management: a systematic literature review, International Journal of Production Research, No. 16, Vol. 58.
  • Muharam M. and Latif M. (2019), Design of poka-yoke system based on fuzzy neural network for rotarymachinery monitoring, IOP Conference Series: Materials Science and Engineering, Volume 602, Conference on Innovation in Technology and Engineering Science (CITES 2018) 08/11/2018 – 09/11/2018 Padang, West Sumatra, Indonesia.
  • Nallusamy S. and Adil Ahamed M.A. (2017), Implementation of lean tools in an automotive industry for productivity enhancement – A case study, International Journal of Engineering Research in Africa, Vol. 29.
  • Oliveira J., Sá J.C., and Fernandes A. (2017), Continuous improvement through ‘Lean Tools’: An application in a mechanical company, Procedia Manufacturing, Vol. 13, pp. 1082–1089. DOI: 10.1016/j.promfg.2017.09.139.
  • Pagliosa M. and Tortorella G. (2021), Industry 4.0 and Lean Manufacturing: A systematic literature review and future research directions, Journal of Manufacturing Technology Management, No. 3, Vol. 32, pp. 543–569. DOI: 10.1108/JMTM-12-2018-0446.
  • Pech M., Vrchota J., and Bednář J. (2021), Predictive Maintenance and Intelligent Sensors in Smart Factory: Review, Sensors, No. 4, Vol. 21. [Online]. Available: https://www.mdpi.com/1424-8220/21/4/1470.
  • Pekarcikova M., Trebuna P., Kliment M., Mizerak M., and Kral S. (2021), Simulation testing of the ekanban to increase the efficiency of logistics processes, International journal of simulation modelling, No. 1, Vol. 20.
  • Phuong N. and Guidat T. (2018), Sustainable value stream mapping and technologies of Industry 4.0 in manufacturing process reconfiguration: A case study in an apparel company, 2018 IEEE International Conference on Service Operations and Logistics, and Informatics, pp. 85–90.
  • Pologe J., Robert J., and Traon Y.Le. (2020), A Case Driven Study of the Use of Time SeriesClassification for Flexibility in Industry 4.0, Sensors, No. 24, Vol. 20.
  • Pozzi R., Cannas V.G., and Ciano M.P. (2021), Linking data science to lean production: a model to support lean practices, International Journal of Production Research. DOI: 10.1080/00207543.2021.1946192.
  • Ramadan M. (2012), RFID-Enabled Dynamic Value Stream Mapping for Smart Real-Time Lean-Based Manufacturing System, PhD in engineering From the Faculty of Engineering, Mechanical and process engineering department university Duisburg-Essen.
  • Ramadan M. and Salah B. (2019), Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study, International Journal of Industrial and Manufacturing Engineering, No. 3, Vol. 13, pp. 174–181.
  • Santos B.P., Enrique D.V., Maciel V.B.P., Lima T.M., Charrua-Santos F., and Walczak R. (2021), The Synergic Relationship Between Industry 4 . 0 and Lean Management : Best Practices from the Literature, Management and Production Engineering Review, No. 1, Vol. 12, pp. 94–107. DOI: 10.24425/mper.2021.136875.
  • Siu B. (2021), A just-in-time private-cloud mobile-appbased announcement portal (ap): A hong kong case study with broad application for academic, commerce, government, Smart Innovation, Systems and Technologies, Vol. 191.
  • Taghavi V., Vahidtaghaviensetsmtlca E., and Beauregard Y. (2020), The Relationship between Lean and Industry 4.0: Literature Review, 5th North American Conference on Industrial Engineering and Operations Management, Michigan, USA, August 10-14, 2020 pp. 808–820.
  • Tissir S., El Fezazi S., and Cherrafi A. (2020), Industry 4.0 impact on Lean Manufacturing: Literature Review, IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), pp. 1–5. DOI: 10.1109/LOGISTIQUA49782.2020.9353889.
  • Todoran G. and Bader M. (2018), Just-in-Time Emergency Trajectories: A Formulation Towards Safety in Autonomous Navigation, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3422–3429. DOI: 10.1109/IROS.2018.8593721.
  • Tortorella G.L., Saurin T.A., Filho M.G., Samson D., and Kumar M. (2021), Bundles of Lean Automation practices and principles and their impact on operational performance, International Journal of Production Economics, No. January, Vol. 235. DOI: 10.1016/j.ijpe.2021.108106.
  • Valamede L.S. and Akkari A.C.S. (2020), Lean 4.0: A new holistic approach for the integration of lean manufacturing tools and digital technologies, International Journal of Mathematical, Engineering and Management Sciences, No. 5, Vol. 5, pp. 854–868. DOI: 10.33889/IJMEMS.2020.5.5.066.
  • Venâncio A.L.A.C., de Freitas Rocha Loures N., Deschamps F., Lumikoski E., and dos Santos A.F. (2021), Digital Transformation Framework for Adequacy of Maintenance Systems for Industry 4.0, Communications in Computer and Information Science, In: Rossit, D.A., Tohmé, F., Mejía Delgadillo, G. (Eds.) Production Research. ICPR-Americas 2020. Communications in Computer and Information Science, Vol. 1407. Springer, Cham.
  • Villalba-Diez J., Gutierrez M., Grijalvo Martín T., Sterkenburgh M., Losada J.C., and Benito R. (2021), Quantum JIDOKA. Integration of Quantum Simulation on a CNC Machine for In-Process Control Visualization, Sensors, No. 15, Vol. 21.
  • Vrchota J., Pech M., Rolínek L., and Bednář J. (2020), Sustainability Outcomes of Green Processes in Relation to Industry 4.0 in Manufacturing: Systematic Review, Sustainability, No. 15, Vol. 12, p. 5968, 2020, [Online]. Available: https://www.mdpi.com/2071-1050/12/15/5968.
  • Wang X., Kong X.T.R., Huang G., and Luo H. (2018), Cellular Warehousing for Omnichannel Retailing: Internet of Things and Physical Internet Perspectives, No. 299, EasyChair Preprint.
  • Wang Y., Hu D., Wang H., Zhang T., and Yan H. (2020), Practical design optimization of cellular structures for additive manufacturing, Engineering Optimization, No. 11, Vol. 52.
  • Wang P., Wu P., Chi H.L., and Lief X. (2020), Adopting lean thinking in virtual reality-based personalized operation training using value stream mapping, Automation in Construction, Vol. 119.
  • Weyer S., Meyer T., Ohmer M., Gorecky D., and Zühlke D. (2016), Future Modeling and Simulation of CPSbased Factories: Example from the Automotive Industry, IFAC PapersOnLine, No. 31, Vol. 49, pp. 97-102, 2016. DOI: 10.1016/j.ifacol.2016.12.168.
  • Xing W., Hao J.L., Qian L., Tam V.W.Y., and Sikora K.S. (2021), Implementing lean construction techniques and management methods in Chinese projects: A case study in Suzhou, China, Journal of Cleaner Production, Vol. 286.
  • Yin X., Fan X., Gu Y., and Wang J. (2017), Sequential dynamic gesture recognition controlled poka-yoke system for manual assembly, CIMS, No. 7, Vol. 23, pp. 1457–1468.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-537f98a5-3cdc-4686-87d5-9923e40c185c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.