Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Hiperboliczny model przepływu płynu w paradygmacie Bayesa
Języki publikacji
Abstrakty
Theoretical and numerical modeling of fluid transients in pipeline systems is a challenging field of research. The governing flow equations constitute a system of nonlinear hyperbolic partial differential equations enforcing the conservation laws for mass, momentum and energy. The application of these mathematical models might be limited due to the absence of complete knowledge about the physical phenomena and uncertainties. Knowledge about the initial and boundary conditions is usually obtained from measurements. The presence of noise and inaccuracies in these measurements, as well as inexactness of the fluid flow model and approximations for solving the full mathematical system, can lead to predictions that significantly differ from reality. Our interest is to deal with the problem of extracting information about states, or parameters, or both, of the system in real time given noisy measurements. We investigated the performance of different nonlinear data assimilation methods within the Bayesian framework applied to a quasilinear nonhomogeneous hyperbolic system of partial differential equations of first order describing fluid transients. These methods merge sparse data into numerical models to optimize predictions and reduce uncertainties in the modeled state variables. The performance of the extended Kalman filter, unscented Kalman filter and two particle filters, namely sequential importance resampling and its variant, the auxiliary particle filters, were investigated. Numerical experiments were conducted for an isothermal and nonisothermal flow field. The isothermal fluid flow model in mathematical conservation-law form was solved with the two-step Lax-Wendroff scheme and a semi discrete finite volume scheme using flux limiters. The latter high-resolution technique was applied to estimate flow transients using the extended Kalman filter while allowing for solutions that contain discontinuities, such as shock waves. The non isothermal flow model in non conservative form was solved with the method of lines using a classical five-point, fourth-order finite difference approximation. The semidiscrete approximations were integrated with a multi stage explicit Runge-Kutta scheme. With respect to estimation accuracy, robustness and computation time of the Bayesian algorithms, we discussed the impact of inverse crime, ensemble size and resampling algorithm in the particle filter, spatial and temporal resolution of sensor readings, noise statistics and gradient steepness in the mass flow boundary conditions. Simulations were conducted for fluids in dens liquid or gaseous phase. In general, we can conclude that in most of the situations the Bayesian approach is successful in estimating fluid transients. Taking into account the computation time of the unscented Kalman filter, robustness issues of the particle filters and numerical efficiency of computing the Jacobian matrix, the extended Kalman filter would be a better choice for real-time state estimation.
Teoretyczne i numeryczne modelowanie przebiegów nieustalonych płynów w systemach rurociągowych jest wyzwaniem w dziedzinie badań. Równania rządzące przepływami stanowią system hiperbolicznych nieliniowych równań różniczkowych cząstkowych opartych na zasadach zachowania masy, pędu i energii. Stosowanie takich modeli matematycznych może być ograniczone ze względu na brak pełnej wiedzy o zjawiskach fizycznych i niepewnościach. Wiedzę o początkowych i brzegowych warunkach zazwyczaj otrzymuje się z pomiarów. Istnienie szumów i niedokładności pomiarów, jak również niedokładność modelu przepływu płynu i aproksymacji do rozwiązywania pełnego systemu matematycznego, może prowadzić do przewidywań, które znacznie różnią się od rzeczywistości. W obszarze naszych zainteresowań jest problem uzyskania informacji o stanach i/lub parametrach systemu w czasie rzeczywistym z pomiarów zawierających szum. Badaliśmy skuteczność różnych metod, asymilacji danych nieliniowych w ramach Bayesa stosowanych do quasi-liniowego niejednorodnego hiperbolicznego układu równań różniczkowych cząstkowych pierwszego rzędu, opisującego przebieg nieustalony płynu. Te metody scalają dane w modele numeryczne w celu optymalizacji przewidywań oraz zmniejszenia niepewności modelowanych zmiennych stanu. Oceniliśmy skuteczność rozszerzonego filtru Kalmana, bezśladowego filtru Kalmana i dwóch filtrów cząsteczkowych, a mianowicie klasycznego algorytmu filtru cząsteczkowego oraz jego wariantu - pomocniczego filtru cząsteczkowego. Numeryczne eksperymenty zostały przeprowadzone dla izotermicznego i nieizotermicznego pola przepływu. Model izotermicznego przepływu płynu w postaci zachowawczej w sensie matematycznym został rozwiązany z dwustopniowego schematu Laxa-Wendroffa oraz semidyskretnej metody objętości skończonych używając ograniczników strumienia (flux limiters). Ta ostatnia metoda została zastosowana do estymowania przepływu przebiegu nieustalonego, za pomocą filtru Kalmana i dopuszcza rozwiązania, które zawierają nieciągłości, takie jak fale uderzeniowe. Nieizotermiczny model przepływu w postaci niezachowawczej został rozwiązany metodą linii za pomocą pięciopunktowego centralnego schematu różnicowego czwartego rzędu. Całkowanie układu równań różniczkowych zwyczajnych zostało zrobione poprzez klasyczną metodę Rungego-Kutty. W odniesieniu do dokładności estymacji, odporności i czasu obliczeń algorytmów Bayesa omówiony został wpływ przestępstwa odwrotności (inverse crime), ilości cząsteczek i algorytmu repróbkowania stosowanych w filtrach cząstek staIh, przestrzennej i czasowej siatki odczytów czujników; statystyk szumów i stromości warunków brzegowych przepływu. Symulacje zostały wykonane dla płynów w gęstej fazie ciekłej lub gazowej. Ogólnie, można stwierdzić, że w większości sytuacji bayesowskie podejście jest skuteczne w estymacji przebiegów nieustalonych płynów. Biorąc pod uwagę czas obliczania bezśladowego filtru Kalmana, kwestie odporności filtrów cząstek i efektywności numerycznej obliczania macierzy Jacobiego, wykorzystanie rozszerzonego filtru Kalmana byłoby lepszym wyborem dla estymacji stanu w czasie rzeczywistym.
Rocznik
Tom
Strony
3--104
Opis fizyczny
Bibliogr. 135 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Gas Engineering Group
Bibliografia
- [1] ARULAMPALAM, M. S., MASKELL, S., Gordon, N., AND CLAPP, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50, 2 (2002), 174-188.
- [2] AUDET, C., B’ECHARD, V., AND DIGABEL, S. L. Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search. Journal of Global Optimization 41, 2 (2008), 299-318.
- [3] AUDET, C., AND J. E. DENNIS, J. Analysis of Generalized Pattern Searches. SIAM Journal on Optimization 13, 3 (2002), 889-903.
- [4] AUDET, C., ANDJ. E. DENNIS,J. Mesh Adaptive Direct Search Algorithms for Constrained Optimization. SIAM Journal on Optimization 17, 1 (2006), 188-217.
- [5] BEHROOZ, H., AND BOOZARJOMEHRY, R. B. Modeling and state estimation for gas transmission networks. Journal of Natural Gas Science and Engineering 22 (2015), 551-570.
- [6] BERZUINI, C., BEST, N. G., GILKS, W. R., AND LARIZZA, C. Dynamic Conditional Independence Models And Markov Chain Monte Carlo Methods. Journal of the American Statistical Association 92 (1997), 1403-1412.
- [7] BISH0P, C. Pattern Recognition and Machine Learning. Springer, 2006.
- [8] BUTCHER, J. C. Numerical Methods for Ordinary Differential Equations. Wiley, Chichester, 2003.
- [9] CARPENTER, J., CLIFFORD, P., AND FEARNHEAD, P. Improved particle filters for nonlinear problems. IEE Proceedings - Radar, Sonar and Navigation 146,1 (1999), 2-7.
- [10] CHACZYKOWSKI, M. Transient flow in natural gas pipeline - The effect of pipeline thermal model. Applied Mathematical Modelling 34, 4 (2009), 1051-1067.
- [11] CHangG, S., CHOWHAN, T., AND LATIF, S. State and Parameter Estimation with an SIR Particle Filters in a Three-Dimensional Groundwater Pollutant Transport Model. Journal of Environmental Engineering 138, 11 (2012), 1114-1121.
- [12] CHEN, Z. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond. Tech. rep., Communications Research Laboratory, McMaster University, Canada, 2003.
- [13] COLEBROOK, C. F. Turbulent Flow in Pipes, with particular reference to the Transition Region between the Smooth and Rough Pipe Laws. Journal of the Institution of Civil Engineers 11, 4 (1939), 133-156.
- [14] COURANT, R., FRIEDRICHS, K., AND LEVY, H. Über die partiellen Differenzengieichungen der mathematischen Physik. Mathematische Annalen (in German) 100, 1 (1928), 32-74.
- [15] CRISAN, D., AND DOUCET, A. A survey of convergence results on particle filtering methods for practitioners. IEEE Transactions on Signal Processing 50, 3 (2002), 736-746.
- [16] DEL MORAL, P. Feynman-Kac Formulae, Genealogical and Interacting Particle Systems with Applications. Probability and Its Applications. Springer-Verlag New York, 2004.
- [17] DEMPSTER, A. P. Upper and Lower Probabilities Induced by a Multivalued Mapping. Annals of Mathematical Statistics 38, 2 (1967), 325-339.
- [18] DEMPSTER, A. P. A Generalisation of Bayesian Inference (with discussion). J Royal Statistical Society ser. B 30 (1968), 205-247.
- [19] DOUC, R., CAPPÉ, O., AND MOULINES, E. Comparison of Resampling Schemes for Particle Filtering. In 4th International Symposium on Image and Signal Processing and Analysis (ISPA) (2005).
- [20] DOUCET, A., DE FREITAS, N., AND GORDEN, N. Sequential Monte Carlo methods in practice. Springer-Verlag, 2001.
- [21] DOUCET, A., GODSILL, S., AND ANDRIEU, C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10, 3 (2000), 197-208.
- [22] DOUGLAS, J. F., GASORIEK, J. M., SWAFFIELD, J., AND JACK, L. Fluid Mechanics, 5 ed. Pearson, 2005.
- [23] DURGUT, I., AND LEBLEBICIOGLU, K. Kalman-Filter Observer Design around Optimal Control Policy for Gas Pipelines. International Journal for Numerical Methods in Fluids 24, 2 (1997), 233-245.
- [24] FEARNHEAD, P. Particle filters for mixture models with an unknown number of components. Statistics and Computing 14, 1 (2004), 11-21.
- [25] FENGHOUR, A., WAKEHAM, W. A., AND VESOVIC, V. The Viscosity of Carbon Dioxide. Journal of Physical and Chemical Reference Data 27 1 (1998), 31-44.
- [26] FORNBERG, B. Generation of Finite Difference Formulas on Arbitrarily Spaced Grids. Mathematics of Computation 51, 184 (1988), 699-706.
- [27] GELB, A. Applied Optimal Estimation. MIT Press, 1974.
- [28] GENTRIC, C., PLA, F., LATIFI, M., AND CORRIOU, J. Optimization and non-linear control of a batch emulsion polymerization reactor. Chemical Engineering Journal 75,1 (1999), 31-46.
- [29] GODUNOV, S. K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (NS.) 47(89), 3 (1959), 271-306.
- [30] GOODMAN, I. R., MAHLER, R. P. S., AND NGUYEN, H. T. Mathematics of Data Fusion, vol. 37 of Theory and Decision Library. Springer Netherlands, 1997.
- [31] GORDON, N., SALMOND, D., AND EWING, C. Bayesian state estimation for tracking and guidance using the bootstrap filter. Journal of Guidance, Control, and Dynamics 18, 6 (1995), 1434-1443.
- [32] GORDON, N., SALMOND, D., AND SMITH, A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Processing, IEE Proceedings F 140, 2 (1993), 107-113.
- [33] GRIFFITHS, G., AND SCHIESSER, W. Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple. Academic Press, 2011.
- [34] GUZZI, R. Data Assimilation: Mathematical Concepts and Instructive Examples. Springer Briefs in Earth Sciences. Springer International Publishing, 2016.
- [35] HAMMERSLEY,J. M., AND HANSCOMB, D. C. Monte Carlo Methods. London: Chapman & Hall, 1964.
- [36] HARTEN, A. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics 49, 3 (1983), 357-393.
- [37] HELGAKER, J. F., OOSTERKAMP, A., LANGELANDSVIK, L. I., AND YTREHUS, T. Validation of 1D flow model for high pressure offshore natural gas pipelines. Journal of Natural Gas Science and Engineering 16 (2014), 44-56.
- [38] HIRSCH, C. Numerical Computation of Internal and External Flows, volume 2: Computational Methods for Inviscid and Viscous Flows. Wiley, Chichester, 1990.
- [39] HOL, J., SCHON, T., AND GUSTAFSSON, F. On Resampling Algorithms for Particle Filters. Nonlinear Statistical Signal Processing Workshop, IEEE (2006), 79-82.
- [40] HOLDERBAUM, T., AND GMEHLING, J. A Group-Contribution Equation of State Based on UNIFAC. Fluid Phase Equilibria 70, 2-3 (1991), 251-265.
- [41] HOU, T. Y., ANO FLOCH, P. G. L. Why nonconservative schemes converge to wrong solutions: error analysis. Mathematics of Computation 62, 206 (1994),497-530.
- [42] HURON, M.-J., AND VIDAL, J. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria 3, 4 (1979), 255-271.
- [43] INCROPERA, F. P., AND DEWITT, D. P. Introduction to Heat Transfer. Wiley, 1996.
- [44] ISARD, M., AND BIKE, A. Computer Vision - ECCV‘96 Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1996, ch. Contour tracking by stochastic propagation of conditional density, pp. 343-356.
- [45] JAZWINSKI, A. H. Stochastic processes and filtering theory. Academic Press New York, 1970.
- [46] JULIER, S., UHLMANN,J., AND DURRANT-WHYTE, H. A new method for the nonlinear transformation of means and covariances in filters and estimators. Automatic Control, IEEE Transactions on 45, 3 (Mar 2000), 477-482.
- [47] JULIER, S. J., UHLMANN, J. K., AND DIJRRANT-WHYTE, H. E A new approach for filtering nonlinear systems. In Proceedings of the American Control Conference, Seattle, WA (1995), pp. 1628-1632.
- [48] KAIPIO, J., AND SOMERSALO, E. Statistical and Computational Inverse Problems, 1 ed., vol. 160 of Applied Mathematical Sciences. Springer-Verlag New York, 2005.
- [49] KAIPIO, J., AND SOMERSALO, E. Statistical inverse problems: Discretization, model reduction and inverse crimes. Journal of Computational and Applied Mathematics 198, 2 (2007), 493-504.
- [50] KALMAN, R. E. A new approach to linear filtering and prediction problems. Transactions of the ASME - Journal of Basic Engineering 82, Series D (1960), 34-45.
- [51] KANAZAWA, K., KOLLER, D., AND RUSSELL, S. Stochastic simulation algorithms for dynamic probabilistic networks. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada (1995), 346-351.
- [52] KITAGAWA, G. Monte Carlo Filters and Smoother for Non-Gaussian Nonlinear State Space Models. Journal of Computational and Graphical Statistics 5, 1 (1996), 1-25.
- [53] KITAGAWA, G., AND GERSCH, W. Smoothness Priors Analysis of Time Series, vol. 116 of Lecture Notes in Statistics. Springer-Verlag New York, 1996.
- [54] KIUCHI, T. An implicit method for transient gas flows in pipe networks. International Journal of Heat and Fluid Flow 15, 5 (1994), 378-383.
- [55] KONG, A., LIU, J. S., AND WONG, W. H. Sequential Imputations and Bayesian Missing Data Problems. Journal of Me American Statistical Association 89, 425 (1994), 278-288.
- [56] KONTOGEORGIS, G. M., VOTJTSAS, E. C., YAKOUMIS, I. V., AND TASSIOS, D. P. An Equation of State for Associating Fluids. Industrial Engineering Chemistry Research 35, 11 (1996), 4310-4318.
- [57] KUNZ, O., KLIMECK, R., WAGNER, W., AND JAESCHKE, M. The GERG2004. Wide-Range Equation of State for Natural Gases and Other Mixtures. GERG TM15 2007. Tech. rep., Fortschritt-Berichte VDI Reihe 6 Nr. 557, VDI Verlag, Dusseldorf; also available as GERG Technical Monograph 15, 2007.
- [58] KUNZ, O., AND WAGNER, W. The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG2004. Journal of Chemical Engineering Data 57, 11 (2012), 3032-3091.
- [59] LANEY, C. Computational Gas Dynamics. Cambridge University Press, UK, 1998.
- [60] LANGELANDSVIK, L., POSTVOLL, W., AARHUS, B., AND KASTE, K. Accurate calculation of pipeline transport capacity. In Proceedings to World Gas Conference (2009).
- [61] LAX, P. D., AND WENDROFF, B. Systems of Conservation Laws. Communications on Pure and Applied Mathematics 13, 2 (1960), 217-237.
- [62] LAX, P. D., AND WENDROFF, B. Difference Schemes for Hyperbolic Equations with High Order of Accuracy. Communications on Pure and Applied Mathematics 17, 3 (1964), 381-398.
- [63] LE DIGABEL, S. Algorithm 909: NOMAD: Nonlinear Optimization with the MADS Algorithm. ACM Transactions on Mathematical Software (TOMS) 37, 4 (2011), 44:1-44:15.
- [64] LEMMON, E. W., HUBER, M. L., AND MCLINDEN, M. O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, 8.0 ed. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2007.
- [65] LEMMON, E. W., AND JACOBSEN, R. T. Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air. International Journal of Thermophysics 25, 1 (2004), 21-69.
- [66] LEMMON, E. W., AND TILUER-ROTH, R. A Helmholtz energy equation of state for calculating the thermodynamic properties of fluid mixtures. Fluid Phase Equilibria 165, 1 (1999), 1-21.
- [67] LEVEQUE, R. J. Numerical Methods for Conservation Laws. Lectures in Mathematics. ETH Zürich. Birkhäuser Basel, 1992.
- [68] Li, H., JAKOBSEN, J. P., WILHELMSEN, Ø., AND YAN, J. PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models. Applied Energy 88, 11 (2011), 3567-3579.
- [69] LI, H., WILHELMSEN, Ø., LV, Y., WANG, W., AND YAN, J. Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures: Review of experimental data and theoretical models. International Journal of Greenhouse Gas Control 5, 5 (2011), 1119-1139.
- [70] LIU, J. S. Metropolized independent sampling with comparison to rejection sampling and importance sampling. Statistics and Computing 6, 2 (1996), 113-119.
- [71] LIU, J. S., AND CHEN, R. Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association 93, 443 (1998), 1032-1044.
- [72] MARSHALL, A. The Use of Multistage Sampling Schemes in Monte Carlo Computations. New York: Wiley, 1956.
- [73] THE MATHWORXS, INc. MATLAB version 8.3.0.532 (R2014a). Natick, Massachusetts, 2014.
- [74] MAYBECK, P. S. Stochastic Models, Estimation and Control: Volume 1. Academic Press, 1979.
- [75] MCGRAYNE, S. B. The Theory That Would Not Die. New Haven, CT: Yale University Press, 2011.
- [76] MERWE, VAN DER, R., WAN, E. A., ANDJULIER, S. I. Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion: Applications to Integrated Navigation. In AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island (2004), pp. 16-19.
- [77] METROPOLIS, N., AND ULAM, S. The Monte Carlo method. Journal of the American Statistical Association 44, 247 (1949), 335-341.
- [78] NIMTZ, M., KLATT, M., WIESE, B., KOHN, M., AND KRAUTZ, H. J. Modelling of the CO2 process- and transport chain in CCS systems Examination of transport and storage processes. Chemie der Erde - Geochemistry 70, 3 (2010), 185-192.
- [79] OWEN, A., AND ZHOU, Y. Safe and Effective Importance Sampling. Journal of the American Statistical Association 95, 449 (2000), 135-143.
- [80] OZAWA, A., AND SANADA, K. Kalman filter for estimating transient pressure and flow rate in a pipe. In SICE Annual Conference: Japan (2011).
- [81] PITT, M. K., AND SHEPHARD, N. Filtering via Simulation: Auxiliary Particle Filters Journal of the American Statistical Association 94, 446 (1999), 590-599.
- [82] POLONI, M, WINTERBONE, D E, AND NICHOLS, J R. Comparison of unsteady flow calculations in a pipe by the method of characteristics and the two-step dif1erentiai Lax-Wendroff method. International Journal of Mechanical Sciences 29, 5 (1987), 367-378.
- [83] POWELL, T. D. Automated Tuning of an Extended Kalman Filters Using the Downhill Simplex Algorithm. Journal of Guidance, Control, and Dynamics 25, 5 (2002), 901-908.
- [84] REDDY, K. V. M., SINGH, T., CHENG, Y., AND SCOTT, P. D. Data Assimilation for Dispersion Models. In Information Fusion, 9th International Conference on (Florence, 2006), pp. 1-8.
- [85] RICHTMYER, R. D. A Survey of Difference Methods for Non-Steady Fluid Dynamics. NCAR Technical Note NCAR/TN-63-2+STR, 1962.
- [86] RISTIC, B., ARULAMPALAM, S., AND GORDON, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House Radar Library. Artech House, Boston, MA, 2004.
- [87] ROBERT, C., AND CASELLA, G. Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer-Verlag, New York, 1999.
- [88] ROE, P. Characteristic-based schemes for the Euler equations. Annual Review of Fluid Mechanics 18, 1 (1986), 337-365.
- [89] RUBIN, D. B. Comment on The calculation of posterior distributions by data augmentation by M. A. Tanner and W. H. Wong. Journal of the American Statistical Association 82 (1987), 543-546.
- [90] SALANE, D. E. Adaptive Routines for Forming Jacobians Numerically. Tech. Rep. SAND86-1319, Sandia National Laboratories, 1986.
- [91] SANADA, K. Using a Kalman Filters to Estimate Unsteady Flow. International Journal of Automation Technology, 6 4 (2012), 440-444.
- [92] SCHIESSER, W. E. The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego, 1991.
- [93] SCHIESSER, W. E. Partial Differential Equation Analysis in Biomedical Engineering: Case Studies with MATLAB. Cambridge University Press, 2013.
- [94] SCHIESSER, W. E., AND GRIFFITHS, G. W. A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, New York, NY., 2009.
- [95] SHAFER, G. A Mathematical Theory of Evidence. Princeton University Press, Princeton, 1976.
- [96] SHAMPINE, L. F., AND REICHELT, M. W. The MATLAB ODE Suite. SIAM Journal on Scientific Computing 18 (1997), 1-22.
- [97] SHAPIRO, A. The Dynamics and Thermodynamics of Compressible Fluid Flow. The Ronald Press Company, New York, 1954.
- [98] SILVERMAN, B. W. Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986.
- [99] SMETS, P. Belief Functions, in Non-standard Logics for Automated Reasoning. Academic Press, London, 1988.
- [100] SMETS, P. What is Dempster-Shafer’s model. Tech. rep., IRIDIA, Universit’e Libre de Bruxelles, 1993.
- [101] SMETS, P., AND KENNES, R. The Transferable Relief Model. Artificial Intelligence 66 (1994), 191-234.
- [102] SPAN, R., AND WAGNER, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data 25, 6 (1996), 1509-1596.
- [103] SUBANI, N., AND AMIN, N. Analysis of Water Hammer with Different Closing Valve Laws on Transient Flow of Hydrogen-Natural Gas Mixture. Abstract and Applied Analysis 2015 (2015), 1-12.
- [104] SWEBY, P. K. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal of Numerical Analysis 21, 5 (1984), 9951011.
- [105] TANNEHILL, J. C., ANDERSON, D. A., AND PLETCHER, R. H. Computational Fluid Mechanics and Heat Transfer. Taylor and Francis, UK, 1997.
- [106] THOBLEY, A. R. D., AND TILEY, C. H. Unsteady and transient flow of compressible fluids in pipelines - a review of theoretical and some experimental studies. International Journal of Heat and Fluid Flow 8, 1 (1987), 3-15.
- [107] TILLNER-ROTH, R. Fundamental Equations of Stale. Shaker-Verlag, Aachen, 1998.
- [108] TORCZON, V. On the Convergence of Pattern Search Algorithms. SIAM Journal on Optimization 7, 1 (1997), 1-25.
- [109] TORO, E. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer-Verlag, New York, 1999.
- [110] UILHOORN, F. E. Dynamic behaviour of non-isothermal compressible natural gases mixed with hydrogen in pipelines. International Journal of Hydrogen Energy 34, 16 (2009), 6722-6729.
- [111] UILHOORN, F. E. A comparison between PSRK and GERG-2004 equation of state for simulation of non-isothermal compressible natural gases mixed with hydrogen in pipelines. Archives of Mining Sciences 58, 2 (2013), 579-590.
- [112] UILHOORN, F. E. Evaluating the risk of hydrate formation in CO2 pipelines under transient operation. International Journal of Greenhouse Gas Control 14 (2013), 177-182.
- [113] UILHOORN, F. E. A particle filter-based framework for real-time state estimation of a non-linear hyperbolic PDE system describing transient flows in CO2 pipelines. Computers & Mathematics with Applications 68, 12 (2014),1991-2004.
- [114] UILHOORN, F. E. State-space estimation with a Bayesian filters in a coupled PDE system for transient gas flows. Applied Mathematical Modelling 39, 2 (2015),682-692.
- [115] UILHOORN, F. E. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation. Engineering Optimization (2016).
- [116] UILHOORN, F. E. Estimating rapid flow transients using extended Kalman filter. Silesian Pure Appl. Math. 6, 1 (2016), 97-110.
- [117] UILHOORN, F. E. Estimating rapid flow transients using extended Kalman filter. Paper presented at: VI Konferencja Zastosowań Matematyki w Technice, Informatyce i Ekonomii. ZaMa’16. Gliwice. Zakład Matematyki Obliczeniowej i Informatyki Instytutu Matematyki Wydziału Matematyki Stosowanej Politechniki Śląskiej. Stowarzyszenie Wychowanków Politechniki Śląskiej Oddział Wydziału Matematyczno-Fizycznego i Matematyki Stosowanej, p. 50.
- [118] UILHOORN, F. E. Comparison of Bayesian estimation methods for modeling flow transients in gas pipelines. Journal of Natural Gas Science Engineering 38 (2017), 159-170.
- [119] VAN ALBADA, G. D., VAN LEER, B., AND ROBERTS, Jr., W. W. A comparative study of computational methods in cosmic gas dynamics. Astronomy and Astrophysics 108, 1 (1982), 76-84.
- [120] VAN LEER, B. Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme. Journal of Computational Physics 14, 4 (1974), 361-370.
- [121] VAN LEER, B. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. Journal of Computational Physics 23, 3 (1977), 263-275.
- [122] VAN LEER, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics 32, 1 (1979), 101-136.
- [123] VAN LEEUWEN, P. J. Nonlinear data assimilation in geosciences: an extremely efficient particle filters. Quarterly Journal of the Royal Meteorological Society 136, 653 (2010), 1991-1999.
- [124] VAN LEEUWEN, P. J., CHENG, Y., AND REICH, S. Nonlinear Data Assimilation, 1 ed., vol. 2 of Frontiers in Applied Dynamical Systems: Reviews and Tutorials. Springer International Publishing, 2015.
- [125] VIANNA, F., ORLANDE, H., AND DULIKRAICH, G. Estimation of the temperature field in pipelines by using the Kalman filters. In 2nd International Congress of Serbian Society of Mechanics: Serbia (2009).
- [126] WAN, E. A., AND VAN DER MERWE, R. The unscented Kalman filter for nonlinear estimation. In Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000 (2000), pp. 153-158.
- [127] WAN, E. A., AND VAN DER MERWE, R. The Unscented Kalman Filters, in Kalman Filtering and Neural Networks. John Wiley & Sons, Inc., New York, USA., 2001.
- [128] WESSELING, P. Principles of Computational Fluid Dynamic. Springer-Verlag, New York, 2001.
- [129] WHITLEY, D. A genetic algorithm tutorial. Statistics and Computing 4, 2 (1994), 65-85.
- [130] YARDIM, C., GERSTOFT, P., AND HODGKISS, W. S. Tracking Refractivity from Clutter Using Kalman and Particle Filters, IEEE Transactions on Antennas and Propagation 56, 4 (2008), 1058-1070.
- [131] ZADEH, L. A. Fuzzy sets. Information and Control 8, 3 (1965), 338-353.
- [132] ZADEH, L. A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 1 (1978), 3-28.
- [133] ZsuTsiu I, V., SYETNIK, V., AND SHIMELEYICH, L. Monte-Carlo technique in problems of optimal information processing. Automation on Remote Control 36, 12 (1976), 2015-2022.
- [134] ZEMANSKY, M. W. Heat and Thermodynamics, 5 ed. McGraw-Hill, New York, 1968.
- [135] ZHANG, Z. X., WAG, G. X., MASSAROTTO, P., AND RUDOLPH, V. Optimization of pipeline transport for CO2 sequestration. Energy Conversion and Management 47, 6 (2006), 702-715.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-537d2452-756d-4aef-a0fa-ebac3772e717