Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Snoring is a typical and intuitive symptom of the obstructive sleep apnea hypopnea syndrome (OSAHS), which is a kind of sleep-related respiratory disorder having adverse effects on people’s lives. Detecting snoring sounds from the whole night recorded sounds is the first but the most important step for the snoring analysis of OSAHS. An automatic snoring detection system based on the wavelet packet transform (WPT) with an eXtreme Gradient Boosting (XGBoost) classifier is proposed in the paper, which recognizes snoring sounds from the enhanced episodes by the generalization subspace noise reduction algorithm. The feature selection technology based on correlation analysis is applied to select the most discriminative WPT features. The selected features yield a high sensitivity of 97.27% and a precision of 96.48% on the test set. The recognition performance demonstrates that WPT is effective in the analysis of snoring and non-snoring sounds, and the difference is exhibited much more comprehensively by sub-bands with smaller frequency ranges. The distribution of snoring sound is mainly on the middle and low frequency parts, there is also evident difference between snoring and non-snoring sounds on the high frequency part.
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--12
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- School of Physics and Optoelectronics, South China University of Technology Guangzhou, China
autor
- School of Physics and Optoelectronics, South China University of Technology Guangzhou, China
autor
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery Laboratory of ENT-HNS Disease, First Affiliated Hospital, Guangzhou Medical University Guangzhou, China
autor
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery Laboratory of ENT-HNS Disease, First Affiliated Hospital, Guangzhou Medical University Guangzhou, China
Bibliografia
- 1. Adesuyi T.A., Kim B.M., Kim J. (2022), Snoring sound classification using 1D-CNN model based on multi-feature extraction, International Journal of Fuzzy Logic and Intelligent Systems, 22(1): 1-10, doi: 10.5391/IJFIS.2022.22.1.1
- 2. Ankişhan H., Tuncer A.T. (2017), A new portable device for the snore/non-snore classification, [in:] 2017 International Conference on Engineering and Technology (ICET), pp. 1-6, doi: 10.1109/ICEngTechnol.2017.8308212
- 3. Arsenali B. et al. (2018), Recurrent neural network for classification of snoring and non-snoring sound events, [in:] 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 328-331, doi: 10.1109/EMBC.2018.8512251
- 4. Ayas N.T. (2013), Risk factors for obstructive sleep apnea, [in:] Encyclopedia of Sleep, pp. 212-214, doi: 10.1016/B978-0-12-378610-4.00308-9
- 5. Cavusoglu M., Kamasak M., Erogul O., Ciloglu T., Serinagaoglu Y., Akcam T. (2007), An efficient method for snore/nonsnore classification of sleep sounds, Physiological Measurement, 28(8): 841-853, doi: 10.1088/0967-3334/28/8/007
- 6. Chen T., Guestrin C. (2016), XGBoost: A scalable tree boosting system, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785-794, doi: 10.1145/2939672.293 9785
- 7. Dafna E., Tarasiuk A., Zigel Y. (2013), Automatic detection of whole night snoring events using noncontact microphone, PLOS ONE, 8(12): e84139, doi: 10.1371/journal.pone.0084139
- 8. Ding L., Peng J., Jiang Y., Song L. (2021), Generalized subspace snoring signal enhancement based on noise covariance matrix estimation, Circuits, Systems, and Signal Processing, 40(7): 3355-3373, doi: 10.1007/s00034-020-01623-3
- 9. Duckitt W.D., Tuomi S.K., Niesler T.R. (2006), Automatic detection, segmentation and assessment of snoring from ambient acoustic data, Physiological Measurement, 27(10): 1047-1056, doi: 10.1088/0967-3334/27/10/010
- 10. Emoto T., Abeyratne U.R., Kawano K., Okada T., Jinnouchi O., Kawata I. (2018), Detection of sleep breathing sound based on artificial neural network analysis, Biomedical Signal Processing and Control, 41: 1-89, doi: 10.1016/j.bspc.2017.11.005
- 11. Han W., Chan C.F., Choy C.S., Pun K.P. (2006), An efficient MFCC extraction method in speech recognition, [in:] 2006 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 145-148, doi: 10.1109/iscas.2006.1692543
- 12. Hui J. et al. (2015), Acoustic analysis of snoring in the diagnosis of obstructive sleep apnea syndrome: A call for more rigorous studies, Journal of Clinical Sleep Medicine, 11(7): 765-771, doi: 10.5664/jcsm.4856
- 13. Hwang S.H. et al. (2015), Polyvinylidene fluoride sensor-based method for unconstrained snoring detection, Physiological Measurement, 36(7): 1399-1414, doi: 10.1088/0967-3334/36/7/1399
- 14. Iber C., Ancoli-Israel S., Chesson A., Quan S.F. (2007), The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specification, Westchester, Illinois, American Academy of Sleep Medicine
- 15. Jiang Y., Peng J., Zhang X. (2020), Automatic snoring sounds detection from sleep sounds based on deep learning, Physical and Engineering Sciences in Medicine, 43(2): 679–689, doi: 10.1007/s13246-020-00876-1
- 16. Kapur V., Strohl K.P., Redline S., Iber C., O’Connor G., Nieto J. (2002), Underdiagnosis of sleep apnea syndrome in U.S. communities, Sleep and Breathing, 6(2): 49-54, doi: 10.1007/s11325-002-0049-5
- 17. Karunajeewa A.S., Abeyratne U.R., Hukins C. (2008), Silence-breathing-snore classification from snore-related sounds, Physiological Measurement, 29(2): 227-243, doi: 10.1088/0967-3334/29/2/006
- 18. Karunajeewa A.S., Abeyratne U.R., Hukins C. (2011), Multi-feature snore sound analysis in obstructive sleep apnea-hypopnea syndrome, Physiological Measurement, 32(1): 83-97, doi: 10.1088/0967-3334/32/1/006
- 19. Korniienko O., Machusky E. (2018), Voice activity detection algorithm using spectral-correlation and wavelet-packet transformation, Radioelectronics and Communications Systems, 61(5): 185-193, doi: 10.3103/S0735272718050011
- 20. Lechner M., Breeze C.E., Ohayon M.M., Kotecha B. (2019), Snoring and breathing pauses during sleep: interview survey of a United Kingdom population sample reveals a significant increase in the rates of sleep apnoea and obesity over the last 20 years – data from the UK sleep survey, Sleep Medicine, 54: 250-256, doi: 10.1016/j.sleep.2018.08.029
- 21. Li T., Zhou M. (2016), ECG classification using wavelet packet entropy and random forests, Entropy, 18(8): 1-16, doi: 10.3390/e18080285
- 22. Lim S.J., Jang S.J., Lim J.Y., Ko J.H. (2019), Classification of snoring sound based on a recurrent neural network, Expert Systems with Applications, 123: 237-245, doi: 10.1016/j.eswa.2019.01.020
- 23. Monson B.B., Hunter E.J., Lotto A.J., Story B.H. (2014), The perceptual significance of high-frequency energy in the human voice, Frontiers in Psychology, 5: 587, doi: 10.3389/fpsyg.2014.00587
- 24. Ng A.K., Koh T.S., Baey E., Lee T.H., Abeyratne U.R., Puvanendran K. (2008), Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea?, Sleep Medicine, 9(8): 894-898, doi: 10.1016/j.sleep.2007.07.010
- 25. Ng A.K., Koh T.S., Puvanendran K., Abeyratne U.R. (2008), Snore signal enhancement and activity detection via translation-invariant wavelet transform, IEEE Transactions on Biomedical Engineering, 55(10): 2332- 2342, doi: 10.1109/TBME.2008.925682
- 26. Nonaka R. et al. (2016), Automatic snore sound extraction from sleep sound recordings via auditory image modeling, Biomedical Signal Processing and Control, 27: 7-14, doi: 10.1016/j.bspc.2015.12.009
- 27. Pedregosa F. et al. (2011), Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12(85): 2825-2830
- 28. Perez-Padilla J.R., Slawinski E., Difrancesco L.M., Feige R.R., Remmers J.E., Whitelaw W.A. (1993), Characteristics of the snoring noise in patients with and without occlusive sleep apnea, American Review of Respiratory Disease, 147(3): 635-644, doi: 10.1164/ajrccm/147.3.635
- 29. Qian K. et al. (2017), Snore sound recognition: On wavelets and classifiers from deep nets to kernels, [in:] 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3737-3740, doi: 10.1109/EMBC.2017.8037669
- 30. Qian K., Janott C., Zhang Z., Heiser C., Schuller B. (2016), Wavelet features for classification of vote snore sounds, [in:] 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 221-225, doi: 10.1109/ICASSP.2016.7471669
- 31. Qian K., Xu Z., Xu H., Wu Y., Zhao Z. (2015), Automatic detection, segmentation and classification of snore related signals from overnight audio recording, IET Signal Processing, 9(1): 21-29, doi: 10.1049/iet-spr.2013.0266
- 32. Senaratna C.V. et al. (2017), Prevalence of obstructive sleep apnea in the general population: A systematic review, Sleep Medicine Reviews, 34: 70-81, doi: 10.1016/j.smrv.2016.07.002
- 33. Sharma G., Umapathy K., Krishnan S. (2020), Trends in audio signal feature extraction methods, Applied Acoustics, 158: 107020, doi: 10.1016/j.apacoust.2019.107020
- 34. Solà-Soler J., Jané R., Fiz J.A., Morera J. (2007), Automatic classification of subjects with and without Sleep Apnea through snoring analysis, [in:] 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6093-6096, doi: 10.1109/IEMBS.2007.4353739.
- 35. Sun X., Peng J., Zhang X., Song L. (2022), Effective feature selection based on Fisher Ratio for snoring recognition using different validation methods, Applied Acoustics, 185: 108429, doi: 10.1016/j.apacoust.2021.108429
- 36. Torlay L., Perrone-Bertolotti M., Thomas E., Baciu M. (2017), Machine learning–XGBoost analysis of language networks to classify patients with epilepsy, Brain Informatics, 4: 159-169, doi: 10.1007/s40708-017-0065-7
- 37. Wang C., Peng J., Song L., Zhang X. (2017), Automatic snoring sounds detection from sleep sounds via multi-features analysis, Australasian Physical and Engineering Sciences in Medicine, 40: 127-135, doi: 10.1007/s13246-016-0507-1
- 38. Wang K., Su G., Liu L., Wang S. (2020), Wavelet packet analysis for speaker-independent emotion recognition, Neurocomputing, 398: 257-264, doi: 10.1016/j.neucom.2020.02.085
- 39. Wu T., Yan G.-Z., Yang B.-H., Sun H. (2008), EEG feature extraction based on wavelet packet decomposition for brain computer interface, Measurement: Journal of the International Measurement Confederation, 41(6): 618-625, doi: 10.1016/j.measurement.2007.07.007
- 40. Young T., Evans L., Finn L., Palta M. (1997), Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women, Sleep, 20(9): 705-706, doi: 10.1093/sleep/20.9.705
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-537b47ea-4a87-41b4-a9f0-da72fc9142a5