PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of applicability of power theories to switching compensator control

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Porównanie przydatności różnych teorii mocy do sterowania kompensatorów kluczujących
Języki publikacji
EN
Abstrakty
EN
Various methods are used to generate the control reference signals for power electronics based compensators. With increased flexibility requirements and non-ideal grid conditions, the applicability of reference signal generation methods for compensation applications should be evaluated. Targeted compensation requires an understanding of power components that are present to enable priority based decisions with respect to the compensation. This paper compares the applicability of several reference signal generation methods for power electronics based compensators from a power theory perspective.
PL
Wiele różnych metod stosuje się dla generowania sygnałów porównawczych, potrzebnych do sterowania kompensatorów energoelektronicznych. Wraz ze wzrostem wymagań odnośnie uniwersalności kompensatorów pracujących w warunkach zaburzeń sieciowych, przydatność różnych metod generowania sygnałów porównawczych do sterowania kompensatorów winna być przedmiotem oceny. Kompensacja dedykowana, oparta na ocenie hierarchii ważności calów kompensacji, wymaga zrozumienia zjawisk energetycznych i składowych mocy. Niniejszy artykuł porównuje przydatność szeregu metod generowania sygnałów porównawczych z perspektywy teorii mocy.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • University of South Karolina
Bibliografia
  • [1] Czarnecki L.S., Pearce S. E., Compensation Objectives and CPC–Based Generation of Reference Signals for Shunt Switching Compensator Control, IET Trans. Power Electronics, March (2009), Vol. 2, No. 1, pp. 33-41.
  • [2] Akagi H., Kanazawa Y., Nabae A., Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage, IEEE Trans. Ind. Applications, Vol. IA-20, (1984), pp. 625-630
  • [3] Akagi H., Nabae A., Atoh S., Control Strategy of Active Power Filters Using Multiple Voltage-Source PWM Converters, IEEE Trans. Ind. Applications, Vol. IA-22, No. 3 (1986), pp. 460-465
  • [4] Nabae A., Tanaka T., A Quasi-Instantaneous Reactive Power Compensator for Unbalanced and Non-Sinusoidal Three-Phase Systems, Proceedings of IEEE 29th Power Electronics Specialist Conference, Vol. 1 (1998), 17-22, pp. 823-828.
  • [5] Akagi H., Active harmonic filters, Proc. IEEE, Vol. 93 (2005), No. 12, pp. 2128-2141.
  • [6] Herrera R.S., Salmeron P., Instantaneous Reactive Power Theory: A Comparative Evaluation of Different Formulations, IEEE Trans. Power Delivery, Vol. 22, No. 1, Jan. 2007, pp. 595-604.
  • [7] Akagi H., Watanabe E.H., Aredes M., Instantaneous Power Theory and Applications to Power Conditioning, New Jersey: IEEE Press/Wiley-Interscience, 2007, ISBN: 978-0-470-10761- 4.
  • [8] Kim K., Blaabjerg F., Bak Jensen B., Choi J., Instantaneous power compensation in three-phase system using p-q-r theory, IEEE Trans. Pow. Elect., Vol. 17 (2002), pp. 701-710.
  • [9] Dolen M., Lorenz R.D., An Industrially Useful Means for Decomposition and Differentiation of Harmonic Components of Periodic Waveforms, IEEE Industry Applic. Conf., Vol. 2, 8-12, pp. 1016-1023, October 2000.
  • [10] Firlit A., Current’s Physical Components Theory and p-q Power Theory in the Control of the Three-phase Shunt Active Power Filter, Electrical Power Quality and Utilisation Jounal, Volume XIII (2007), No. 1, pp. 55-66.
  • [11] Ginn H., Chen G., Flexible Active Compensator Control for Variable Compensation Objectives, IEEE Trans. on Power Electronics, Vol. 23, Issue 6, Nov. 2008, pp. 2931 – 2941.
  • [12] Ginn H.L., Chen G., CPC based converter control for systems with non-ideal supply voltage, Przeglad Elecktrotechniczny, Vol. 87, Jan. 2011, pp. 8-13.
  • [13] Borisov K., Ginn H.L., Multifunctional VSC Based on a Novel Fortescue Reference Signal Generator, IEEE Trans. on Industrial Electronics , Vol. 57, No. 3, 2010, pp. 1002-1007.
  • [14] Ginn H.L., Control method for grid-connected converters in systems with non-ideal supply voltage, Proceedings of Applied International Workshop on Measurements for Power Systems (AMPS), 2011, pp. 96 – 101.
  • [15] Asiminoaei L., Blaabjerg F., Hansen S., Evaluation of harmonic detection methods for active power filter applications, Twentieth Annual IEEE Applied Power Electronics Conf. and Exposition, (2005) Vol. 1, 635 – 641
  • [16] Maza Ortega J.M., et al., Reference Current Computation Methods for Active Power Filters: Accuracy Assessment in the Frequency Domain, IEEE Trans. Power Electronics, Vol. 20 (2005), No. 2, 446-456.
  • [17] Rechka S., Ngandui E., Xu J., Sicard P., A Comparative Study of Harmonic Detection Algorithms for Active Filters and Hybrid Active Filters, Proceedings of IEEE 33rd Power Electronics Specialist Conference, Vol. 1, 23-27, June 2002, pp. 357-363.
  • [18] Cardenas V., Moran L., Bahamondes A., Dixon D., Comparative Analysis of Real Time Reference Generation Techniques for Four-Wire Shunt Active Power Filters, Proceedings of IEEE 34th Power Electronics Specialist Conference, Vol. 2, 15-19, June 2003, pp. 791-796.
  • [19] Moreno V. M., Liserre M., Pigazo A., and Dell’Aquilla A., A comparative analysis of real-time algorithms for power signal decomposition in multiple synchronous reference frames, IEEE Trans. Ind. Elect., Vol. 22, No. 4, 2007, pp. 1280–1289.
  • [20] Czarnecki L.S., On some Misinterpretations of the Instantaneous Reactive Power p-q Theory, IEEE Trans. Power Electronic, Vol. 19 (2004), No. 3, pp. 828-836.
  • [21] Monteiro Luís F C, Afonso João Luís, Pinto Josée G., Watanabe E.H., Aredes M., Akagi H., Compensation algorithms based on the p-q and CPC theories for switching compensators in micro-grids, Brazilian Power Electronics Conference, 2009. COBEP '09, pp. 32-40.
  • [22] Buso S., Malesani L., Mattavelli P., Comparison of Current Control Techniques for Active Filter Applications, IEEE Trans. on Industial Electronics, Vol. 45 (1998), No. 5, pp. 722-729.
  • [23] Ginn H. L. III, A Hybrid Reference Signal Generator for Active Compensators, Electrical Power Quality and Utilisation Jounal, Volume XIII (2007), Number 1, pp. 51-57.
  • [24] Paredes H., Morales K., Costabeber A.,Tenti P., Application of Conservative Power Theory to coope-rative control of distributed compensators in smart grids, 2010 International School on Nonsinusoidal Currents and Compensation (ISNCC), pp. 190–196.
  • [25] Czarnecki L.S., Power Theory of Electrical Circuits with Quasi- Periodic Waveforms of Voltages and Currents, ETEP, Vol. 6 (1996), No. 5.
  • [26] Czarnecki L.S., Orthogonal decomposition of the current in a three-phase nonlinear asymmetrical circuit with nonsinusoidal voltage, IEEE Trans. Inst. Meas., Vol. IM-37 (1988), pp. 30-34.
  • [27] Jafar M., Molinas M., Tenti P., Application of conservative power theory for active power filtering of line-commutated HVDC for off shore wind power, PowerTech, 2011 IEEE Trondheim, pp. 1 – 8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53724d50-e38e-410e-a2ec-5ed9ddb182f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.