PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Research on the Heating of Woven Carbon Fiber Fabrics Using Thin-Film Solar Cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study attempted to fabricate heating fabrics using thin-film solar cells. A lightweight and flexible thin-film solar cell was used as the power supply, and fabric samples made of carbon fiber heating lines were used as heating elements. Single-factor experiments of three factors (solar cell voltage, heating time, and carbon fiber heating line arrangement) were conducted, and their influence on the heating effect was analysed. Orthogonal experiments and variance tests were used to determine the influence of the three factors and the optimal heating process. All influential factors were shown to be statistically significant. This kind of heating fabric can be used in warm clothing or for heated clothing.
Rocznik
Strony
61--67
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350121, P.R. China
autor
  • Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350121, P.R. China
  • Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350121, P.R. China
autor
  • Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350121, P.R. China
autor
  • Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350121, P.R. China
autor
  • Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350121, P.R. China
autor
  • Key Lab for Sport Shoes Upper Materials of Fujian Province, Fujian Huafeng New Material Co.,Ltd., Putian, Fujian 351164, P.R. China
autor
  • School of Materials Science,Shanghai Dianji University, Shanghai, P.R. China
autor
  • College of Textile Science and Engineering, Zhejiang Sci-Tech University, Zhejiang, P.R. China
Bibliografia
  • 1. Parida B, Iniyan S, Goic R. A Review Of Solar Photovoltaic Technologies. Renewable and Sustainable Energy Reviews 2011; 15(3): 1625-1636.
  • 2. Compaan A D. Photovoltaics: Clean Power for The 21st Century. Solar Energy Materials and Solar Cells 2006; 90(15): 2170-2180.
  • 3. Ohkita H, Ito S. Transient Absorption Spectroscopy of Polymer-Based Thin-Film Solar Cells. Polymer 2011; 52(20): 4397-4417.
  • 4. Pouladi S, Asadirad M, Oh SK, et al. Effects of Grain Boundaries on Conversion Efficiencies of Single-Crystal-Like Gaas Thin-Film Solar Cells on Flexible Metal Tapes. Solar Energy Materials and Solar Cells 2019; 199:122-128.
  • 5. Guo Z, Sun C, Wang J et al. High-Performance Laminated Fabric with Enhanced Photothermal Conversion and Joule Heating Effect for Personal Thermal Management. ACS Applied Materials & Interfaces 2021; 13(7): 8851-8862.
  • 6. Fafenrot S, Silbermann P, Grimmelsmann N, et al. Integration of Solar Cells and Other Electronic Components into Clothes/Narrow and Smart Textiles. Springer, Cham, 2018: 229-239.
  • 7. Bertoni M, He K, Wang V, et al. Wearable Flexible Solar Cell Charger. NJ Governor’s School of Engineering and Technology 2017; 1(1): 1-7.
  • 8. Feng A, Jia Z, Yu Q, et al. Preparation and Characterization of Carbon Nanotubes/Carbon Fiber/Phenolic Composites on Mechanical and Thermal Conductivity Properties. Nano, 2018:1850037.
  • 9. Wei L, Dong X, Lei W, et al. Simultaneous Enhancement of Electrical Conductivity and Interlaminar Fracture Toughness of Carbon Fiber/Epoxy Composites Using Plasma-Treated Conductive Thermoplastic Film Interleaves. RSC Advances 2018; 8(47): 26910-26921.
  • 10. Dhanabalan SC, Dhanabalan B, Chen X, et al. Hybrid Carbon Nanostructured Fibers: Stepping Stone for Intelligent Textile-Based Electronics. Nanoscale 2019; 11(7): 3046-3101.
  • 11. Lee S Y, Cho J W, Kim Y H. Electrical Heating Effect and Water Repelling Property of Fabrics Spray-Coated with Mixed Solution of Carbon Nanotubes and Hyperbranched Polyurethane. Textile Science and Engineering 2010; 47(3): 184-190.
  • 12. Aouraghe MA, Xu F, Liu X, et al. Flexible, Quickly Responsive and Highly Efficient E-Heating Carbon Nanotube Film. Composites Science and Technology 2019; 183: 107824.
  • 13. Pang EJX, Pickering SJ, Chan A, et al. Use of Recycled Carbon Fibre as a Heating Element. Journal Of Composite Materials 2013; 47(16): 2039-2050.
  • 14. Mo S, Mo M, Ho KC. Fabrication of Electric Heating Garment with Plasma-Assisted Metal Coating (PAC) Technology. International Journal of Clothing Science and Technology 2019; 32(3):297-306.
  • 15. Li Q W, Li Y, Zhang X F, et al. Structure-Dependent Electrical Properties of Carbon Nanotube Fibers. Advanced Materials 2007; 19(20): 3358-3363.
  • 16. Hung CH, Bai YW, Wu HJ, et al. Monitor and Remote Control of a Heating Cloth for The Aged, Consumer Electronics (ICCE). 2014 IEEE International Conference, 2014: 266-267.
  • 17. Shokuhfar A, Afghahi SSS. The Heating Effect of Iron-Cobalt Magnetic Nanofluids in an Alternating Magnetic Field: Application In Magnetic Hyperthermia Treatment. Nanoscale Research Letters 2013; 8(1): 1-11.
  • 18. Wang F, Gao C, Kuklane K, et al. A Review of Technology of Personal Heating Garments. International Journal of Occupational Safety and Ergonomics 2010; 16(3): 387-404.
  • 19. Meng S, Kong T, Ma W, et al. 2D Crystal–Based Fibers: Status and Challenges. Small 2019, 15(39): 1902691.
  • 20. Wang QW, Zhang HB, Liu J, et al. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Advanced Functional Materials 2019; 29(7): 1806819.
  • 21. Zhu J, Chew DAS, Lv S, et al. Optimization Method for Building Envelope Design to Minimize Carbon Emissions of Building Operational Energy Consumption Using Orthogonal Experimental Design (OED). Habitat International 2013; 37: 148-154.
  • 22. Zou G, Xu J, Wu C. Evaluation of Factors that Affect Rutting Resistance of Asphalt Mixes by Orthogonal Experiment Design. International Journal of Pavement Research and Technology 2017; 10(3): 282-288.
  • 23. Liu D, Xia S, Tang H, et al. Parameter Optimization of PEMFC Stack Under Steady Working Condition Using Orthogonal Experimental Design. International Journal of Energy Research 2019; 43(7): 2571-2582.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53706eeb-159a-4f72-9f54-19220532a926
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.