PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy Management System (EMS) as a tool in limiting the coal trace in industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increasing energy efficiency will be crucial to achieving the climate goals laid out in European Union directives. This is particularly true for industries whose share of heat and energy consumption, with Poland as an example, is about one-third of the total. This challenge entails implications both for the reduction of greenhouse gas emissions, especially CO2, and for maintaining the competitiveness of EU industry on the global market. This article presents the basic principles and application of an Energy Management System – EMS – in industrial processes, together with the monitoring of Key Energy Performance Indicators – KPIs – as a tool for making informed investment decisions to improve the energy efficiency of companies and industrial processes. An attempt is made to present the situation in Poland in terms of the energy situation, with a focus on the automotive industry as an example.
Rocznik
Strony
7--21
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • EnobEMS firma INSTALPOL sp. z o.o., Ligota, Poland
  • Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Poland
Bibliografia
  • 1. Andersson, E., Dernegård, H., Wallén, M., Thollander, P., (2021). Decarbonization of industry: Implementation of energy performance indicators for successful energy management practices in kraft pulp mills. Energy Reports, 7, pp. 1808–1817. doi:10.1016/j.egyr.2021.03.009
  • 2. Andersson, E., Thollander, P., (2019). Key performance indicators for energy management in the Swedish pulp and paper industry. Energy Strategy Reviews, 24, pp. 229–235. doi:10.1016/j.esr.2019.03.004
  • 3. André, P., Goepp, V., (2024). A Framework for Defining Customised KPI in Manufacturing Systems. In: Borangiu, T., Trentesaux, D., Leitão, P., Berrah, L., Jimenez, JF., (eds.), Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. Studies in Computational Intelligence, 1136. Springer, Cham. https://doi.org/10.1007/978-3-031-53445-4_26
  • 4. Backlund, S., Ottosson, M., Broberg, S., (2012). Energy efficiency potentials and Energy management practices in Swedish firms. ECEEE 2012 Summer study of energy efficiency in industry, 669–677.
  • 5. Batorska, S., (2022). Droga polskiego przemysłu do zrównoważonego rozwoju. Automatyka, 3, 1–6.
  • 6. Bukowski, M., Śniegocki, A., (2014). Electricity and Industrial Competitiveness. Forum For Energy Analysis. pp. 1–20. www.FAE.org.pl
  • 7. Chevuturi, A., Klingaman, N.P., Turner, A.G., Guo, L., Vidale, P.L., (2022). Projected Changes in the East Asian Hydrological Cycle for Different Levels of Future Global Warming. Atmosphere (Basel), 13(3), pp. 35–115. doi:10.3390/atmos13030405
  • 8. Dalio, R., (2021). Principles for Dealing with the Changing World Order: Why Nations Succeed and Fail. Avid Reader Press / Simon & Schuster.
  • 9. Dechnik, M., Moskwa, S., (2017). Smart house – intelligent building – the idea of the future. Przegląd Elektrotechniczny, 93(9), pp. 3–12. doi:10.15199/48.2017.09.01
  • 10. Derski, B., (2024). Prąd już poniżej 30 gr/kWh. Wysokie Napięcie. 1–7. https://wysokienapiecie.pl/98033-europa-przegrzala-pompy-ciepla/
  • 11. Domański, B., (2015). Współczesne procesy przemian regionalnych przemysłu Polski – próba interpretacji / Contemporary processes of regional industrial changes in Poland – possible interpretations. Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego, 29 (4), pp. 40–53.
  • 12. Domański, B., Guzik, R., Gwosdz, K., Dej, M., (2013). The crisis and beyond: The dynamics and restructuring of automotive industry in Poland. International Journal of Automotive Technology and Management, 13(2), pp. 151–166. doi:10.1504/IJATM.2013.052998
  • 13. Drewnowski, J., Remiszewska-Skwarek, A., Duda, S., Łagód, G., (2019). Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization. Processes, 7, 311. https://doi.org/10.3390/pr7050311
  • 14. Dusiło, M., Zaleska, J., Koszniec, K., (2023). Transformacja Energetyczna w Polsce Edycja 2023. www.forum-energii.eu
  • 15. European Commission. (2023). Quarterly Report on European Electricity Markets. Market Observatory for Energy DG Energy. https://energy.ec.europa.eu/data-andanalysis/market-analysis_en
  • 16. European Commission. (2021). Questions & Answers: Environmental Footprint
  • Methods Recommendation. https://environment.ec.europa.eu/publications/recommendation-use-environmental-footprint-methods_en
  • 17. European Energy Agency. (2023). Share of energy consumption from renewable sources in Europe. https://www.eea.europa.eu/en/analysis/indicators/share-of-energy-consumption-from
  • 18. Eurostat. (2021). Energy efficiency statistics – Statistics Explained. 1–9. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_efficiency_statistics#Primary_energy_consumption_and_distance_to_2020_and_2030_targets
  • 19. Eurostat. (2022). EU overachieves 2020 renewable energy target – Products Eurostat News – Eurostat. https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/ddn-20220119-1
  • 20. GUS. (2022). Gospodarka paliwowo-energetyczna w latach 2021–2022.
  • 21. Guzik, R., Domański, B., Gwosdz, K., (2020). Automotive Industry Dynamics in Central Europe. In: Palgrave Studies of Internationalization in Emerging Markets. pp. 377–397. doi:10.1007/978-3-030-18881-8_15
  • 22. International Energy Agency. (2022). Energy Policy Review Poland 2022. IEA. 17–27. https://www.iea.org/reports/poland-2022
  • 23. Kaczorowska, B., Kurowski, G., Łokietek, K., Obarowska, M., Więckowska, G., (2022). Rocznik Statystyczny Przemysłu.
  • 24. Le-Anh, T., (2023). Energy benchmark and energy saving potential in the pulp and paper industry. AIMS Energy, 11(6), pp. 1306–1327. doi:10.3934/energy.2023059
  • 25. Łukasik, J., Jeartowski, M., Wajs, J., (2023). Optimisation of cooperation of hybrid renewable energy sources with hydrogen energy storage toward the lowest net present cost. Instal, 12, pp. 9–16. doi:10.36119/15.2023.12.2
  • 26. Łukasz, K., (2024). Przeciętne zatrudnienie w sektorze przedsiębiorstw. Rynek Pracy, pp. 2–5.
  • 27. Masłoń, A., Czarnota, J., Szaja, A., Szulżyk-Cieplak, J., Łagód, G., (2020) The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies, 13, 6056. https://doi.org/10.3390/en13226056
  • 28. Masłoń, A., Czarnota, J., Szczyrba, P., Szaja, A., Szulżyk-Cieplak, J., Łagód G., (2024). Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants – A Case Study from Poland. Energies, 17 (5), 1164. https://doi.org/10.3390/en17051164
  • 29. May, G., Barletta, I., Stahl, B., Taisch, M., (2015). Energy management in production: A novel method to develop key performance indicators for improving energy efficiency. Appl Energy, 149, pp. 46–61. doi:10.1016/j.apenergy.2015.03.065
  • 30. Rüdele, K., Wolf, M., (2023). Identification and Reduction of Product Carbon Footprints: Case Studies from the Austrian Automotive Supplier Industry. Sustainability, 15(20): 14911. doi:10.3390/su152014911
  • 31. Shourjeh, M.S., Kowal, P., Drewnowski, J., Szeląg, B., Szaja, A., Łagód, G., (2020) Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization. Energies, 13, 5808. https://doi.org/10.3390/en13215808
  • 32. Statement WEC. (2023). Renewable energy targets. https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energytargets_en
  • 33. Wiech, J., (2019). Dzień, w którym stanęła Ziemia. 46 lat temu świat tonął w kryzysie naftowym. Energetyka, 24. https://energetyka24.com/ropa/dzien-w-ktorym-stanelaziemia-46-lat-temu-swiat-tonal-w-kryzysie-naftowym-komentarz
  • 34. Żelazna, A., Kraszkiewicz, A., Przywara, A., Łagód, G., Suchorab, Z., Werle, S., Ballester, J., Nosek R., (2019). Life cycle assessment of production of black locust logs and straw pellets for energy purposes. Environmental Progress & Sustainable Energy, 38 (1), 163–170. DOI 10.1002/ep.13043
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-536d4f35-6c22-41f1-954a-98b6112a4c61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.