PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon based coatings for applications in friction couples with bearing steel and aluminium alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Low friction nc-WC/a-C:H coatings deposited by means of magnetron sputtering provide very good tribological properties in friction couple against hard steels and good adhesion to steel substrates. Nevertheless, it was necessary to elaborate a new type of coatings because the nc-WC/a-C:H one had no use in friction couple against aluminium alloys. Design/methodology/approach: In the paper the WC/a-C:H and (Si, Cr)C/a-C:H coatings were investigated. The coatings were investigated by means of SEM, EDS, in order to obtain thickness, surface morphology and chemical composition of coatings. Tribological properties of deposited coatings were elaborated by means of 'pin-on-disc' method in friction couple against 100Cr6 bearing steel and AlSi alloy. Findings: It was stated that (Si, Cr)C/a-C:H coatings have very good tribological properties in friction couple against bearing steel and AlSi alloy (friction coefficient <0,1). In case of WC/a-C:H coatings, good tribological properties were achieved in friction couple with bearing steel. Both coatings have very low wear rate in investigated friction couples. Research limitations/implications: The (Si,Cr)C/a-C:H coating have a worse quality of adhesion to quenched and tempered Vanadis 23 HS steel substrate in comparison with the nc-WC/a-C:H coating. Resolving this disadvantage can increase potential of application of (Si, Cr)C/a-C:H coatings. Practical implications: Newly developed (Si, Cr)C/a-C:H coating has a greater application potential for modification of surfaces of elements working in friction couples against hardened steels and light alloys like AlSi. Originality/value: There are numerous publications where low friction carbon based coatings were described mostly as a coatings deposited on elements working in friction couples against hard steels. Undertaken tests showed that the newly developed (Si,Cr)C/aC:H coating can have a broad spectrum of applications in friction couples against different counterbodies, including light Al alloys.
Rocznik
Strony
12--20
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Institute of Materials Science and Technology, Technical University of Lodz, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
  • Institute of Materials Science and Technology, Technical University of Lodz, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
  • [1] V. Tiron, S. Dobrea, C. Costin, G. Popa, On the carbon and tungsten sputtering rate in a magnetron discharge, Nuclear Instruments and Methods in Physic Research B 267 (2009) 434-437.
  • [2] W.H. Kao, Y.L. Su, S.H. Yao, Improving tribological properties and machining performance of a-C coatings by doping with titanium, Journal of Materials Engineering and Performance 15/5 (2006) 525-534.
  • [3] M. Weber, K. Bewilogua, H. Thomsen, R. Wittorf, Influence of different interlayers and bias voltage on the properties of a-C:H and a-C:H:Me coatings prepared by reactive d.c. magnetron sputtering, Surface & Coatings Technology 201 (2006) 1676-1582.
  • [4] S. Zhou, L. Wang, S.C. Wang, Q. Xue, Comparative study of simplex doped nc-WC/a-C and duplex doped nc-WC/a-C(Al) nanocomposite coatings, Applied Surface Science 257 (2011) 6971-6979.
  • [5] S. Zhou, L. Wang, Q. Xue, Controlling friction and wear of nc-WC/a-C(Al) nanocomposite coating by lubricant/additive synergies, Surface & Coatings Technology 206 (2012) 2698-2705.
  • [6] W.H. Kao, Microstructure, adhesion and tribological properties of W-C:Hx% coatings deposited on M2 and WC substrates, Materials Science and Engineering A 432 (2006) 253-260.
  • [7] C. Ruset, E. Grigore, C. Luculescu, X. Li, H. Dong, Synthesis and characterization of W reinforced carbon coatings produced by Combined Magnetron Sputtering and Ion Implantation technique, Thin Solid Films 519 (2011) 4045-4048.
  • [8] B.R. Pujada, G.C.A.M. Janssen, Density, stress, hardness and reduced Young's modulus of W-C:H coatings, Surface & Coatings Technology 201 (2006) 4284-4288.
  • [9] A. Czyżniewski:, Optimising deposition parameters of W-DLC coatings for tool materials of high speed steel and cemented carbide, Vacuum 86 (2012) 2140-2147.
  • [10] Y. Pauleau, F. Thièry, Deposition and characterization of nanostructured metal/carbon composite films, Surface & Coatings Technology 180-181 (2004) 313-322.
  • [11] M.A. Neto, E.L. Silva, A.J.S. Fernandes, F.J. Oliveira, R.F. Silva, Deposition of alpha-WC/a-C nanocomposite thin films by hot filament CVD, Surface & Coatings Technology 206 (2011) 103-106.
  • [12] T. Takeno, H. Miki, T. Takagi, H. Onodera, Electrically conductive properties of tungstencontaining diamond-like carbon films, Diamond & Related Materials 15 (2006) 1902-1905.
  • [13] E. Vassallo, M. Canetti, A. Cremona, F. Ghezzi, G. Grosso, L. Laguardia, Evaluation of method to reduce the redeposition of hydrogenated coatings containing carbon and tungsten in fusion reactors, Vacuum 86 (2012) 1528-1533.
  • [14] H. Meerkmamm, W. Fruth, T. Krumpiegl, C. Schaufler, Mechanical and tribological properties of PVD and PACVD wear resistant coatings, International Journal of Refractory Metals & Hard Materials 17 (1999) 201-208.
  • [15] M. Keunecke, K. Bewilogua, J. Becker, A. Gies, M. Grischke, CrC/a-C:H coatings for highly loaded, low friction applications under formulated oil lubrication, Surface & Coatings Technology 207 (2012) 270-278.
  • [16] V. Singh, J.C. Jiang, E.I. Meletis, Cr-diamondlike carbon nanocomposite films: synthesis, characterization and properties, Thin Solid Films 489 (2005) 150-158.
  • [17] G. Gassner, P.H. Mayrhofer, C. Mitterer, J. Kiefer, Structure-property relations in Cr-C/a-C:H coatings deposited by reactive magnetron sputtering, Surface & Coatings Technology 200 (2005) 1147-1150.
  • [18] A. Grigonis, V. Sablinskas, M. Silinskas, D. Tribandis, The role of hydrogen in a-C:H films deposited from hexane or acetylene using direct ion beam deposition method, Vacuum 75 (2004) 261-267.
  • [19] D. Nilsson, F. Svanh, U. Wiklund, S. Hogmark, Lowfriction carbon-rich carbide coatings deposited by cosputtering, Wear 254 (2003) 1084-1091.
  • [20] A. Czyżniewski, W. Precht, K. Przybylak, Properties of Nb-C: H layers produced by reactive magnetron sputtering, Materials of the VII International Summer School MIELNO'96 „Modern Plasma Surface Technology”, Koszalin University of Technology Publishing house, Koszalin, 1997, 133-146 (in Polish).
  • [21] S. Kukiełka, W. Gulbiński, Y. Pauleau, S.N. Dub, J.J. Grob, Composition, Mechanical properties and friction behavior of nickel/hydrogenated amorphous carbon composite films, Surface & Coatings Technology 200/22-23 (2006) 6258-6262.
  • [22] A. Czyżniewski, W. Precht, Deposition and some properties of nanocrystalline, nanocomposite and amorphous carbon-based coatings for tribological applications, Journal of Materials Processing Technology 157-158 (2004) 274-283.
  • [23] W. Zhai, N. Srikanth, L.B. Kong, K. Zhou, Carbon nanomaterials in tribology, Carbon 119 (2017) 150-171.
  • [24] I. Westermann, K.O. Pedersen, T. Børvik, O.S. Hopperstad, Work-hardening and ductility of artificially aged AA6060 aluminium alloy, Mechanics of Materials 97 (2016) 100-117.
  • [25] S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, Z.M. Lin, Investigating aluminium alloy reinforced by graphene nanoflakes, Materials Science & Engineering A 612 (2014) 440-444.
  • [26] P. Zhang, Z. Li, B. Liu, W. Ding, L. Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A 651 (2016) 376-390.
  • [27] J. Shin, T. Kim, D. Kim, D. Kim, K. Kim, Castability and mechanical properties of new 7xxx aluminium alloys for automotive chassis/body applications, Journal of Alloys and Compounds 698 (2017) 577-590.
  • [28] S. Dey, P. Dey, S. Datta, Design of novel agehardenable aluminium alloy using evolutionary computation, Journal of Alloys and Compounds 704 (2017) 373-381.
  • [29] M. Tocci, A. Pola, G.M. La Vecchia, M. Modigell, Characterization of a New Aluminium Alloy for the Production of Wheels by Hybrid Aluminium Forging. Procedia Engineering 109 (2015) 303-311.
  • [30] M. Stegliński, P. Byczkowska, J. Sawicki, Ł. Kaczmarek, B. Januszewicz, M. Klich, Synergy of the Plastic Treatment HPT and Shot Peening in Aluminium Alloy Al-Mg-Mn-Sc-Zr, Archives of Metallurgy and Materials 61/2B (2016) 1135-1142.
  • [31] B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, Strength and strain hardening of a selective laser melted AlSi10Mg alloy, Scripta Materialia 141 (2017) 45-49.
  • [32] M.J. Cristóbal, R. Figueroa, L. Mera, G. Pena, Tribological behaviour of aluminium alloy AA7075 after ion implantation, Surface & Coatings Technology 209 (2012) 124-130.
  • [33] K.T. Cho, K. Song, S.H. Oh, Y.-K. Lee, K.-M. Lim, W.-B. Lee, Surface hardening of aluminum alloy by shot peening treatment with Zn based ball, Materials Science and Engineering A 543 (2012) 44-49.
  • [34] A.M. Mostafa, M.F. Hameed, S.S. Obayya, Effect of Laser Shock Peening on the Hardness of AL-7075 Alloy, Journal of King Saud University – Science (2017) (in press: available online 5 August 2017), doi: https://doi.org/10.1016/j.jksus.2017.07.012.
  • [35] Ł. Kaczmarek, P. Zawadzki, M. Stegliński, R. Wójcik, M. Klich, K. Kyzioł, D. Kottfer, B. Januszewicz, W. Pawłowski, The effect of two-stage age hardening treatment combined with shot peening on stress distribution in the surface layer of 7075 aluminum alloy, Archives of Metallurgy and Materials 60/3 (2015) 1993-1997.
  • [36] Ł. Kaczmarek, M. Stegliński, H. Radziszewska, Ł. Kołodziejczyk, J. Sawicki, W. Szymański, R. Atraszkiewicz, J. Świniarski, Effect of double-phase segregations formed due to two-stage aging on the strength properties of alloy PN-EN 2024, Metal Science and Heat Treatment 54 (2013) 9-10.
  • [37] A.N. Petrova, H. Radziszewska, L. Kaczmarek, M. Klih, I.G. Brodova, M. Steglinski, Influence of Megaplastic Deformation on the Structure and Hardness of Al–Cu–Mg Alloy after Aging, The Physics of Metals and Metallography 117 (2016) 1288-1295.
  • [38] M. Makówka, W. Pawlak, P. Konarski, B. Wendler, Hydrogen content influence on tribological properties of nc-WC/a-C:H coatings, Diamond and Related Materials 67 (2016) 16-25.
  • [39] W.H. Kao, Microstructure, adhesion and tribological properties of W-C:Hx% coatings deposited on M2 and WC substrates, Materials Science and Engineering A 432 (2006) 253-260.
  • [40] Y.L. Su, T.H. Liu, C.T. Su, T.P. Cho, Effect of chromium content on the dry machining performance of magnetron sputtered CrxC coatings, Materials Science and Engineering A 364 (2004) 188-197.
  • [41] C.H.R. Kumar, P. Nair, B. Ramamoorthy, Characterization of multilayer pvd nanocoatings deposited on tungsten carbide cutting tools, International Journal of Advanced Manufacturing Technology 38 (2008) 622-629.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-536640c3-2bd3-43a3-ab76-2f5efaedef9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.