
Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 2, 2017310

Article citation info:

1. Introduction

The estimation process is supported by a number of statistical 
techniques, methods and procedures for analyzing the data on the 
variable of interest that may be the time that elapses from the well-
defined initial instant, for example, installation of equipment, until the 
occurrence of a specific event, such as the failure of the equipment or 
component under consideration.

The process aims to estimate the distribution parameters for mod-
eling the system under review. The parameters are the distribution 
characteristics that show the behavior of a given population and there-
fore fixed for a specific system. Thus, the estimation of system param-
eters is obtained from the data collected from the population.

System data analysis can be obtained from various possible sourc-
es, namely, laboratory tests or a recording of occurrences along its use 
(historical record).

The parametric analysis assumes that the data fits a specific distri-
bution, such as the Weibull distribution.

The Weibull distribution has a wide application in various fields. 
These applications include its use to model the distribution phenom-
ena of fatigue and the life of many devices, such as bearings, shaft and 
motor [1, 14, 20].

The popularity of the distribution of Weibull due to its great 
flexibility, i.e., as it can describe functions with failure intensity 
constant, increasing and decreasing, for different values of the shape 
parameter.

Since the distribution of Weibull became widely recognized, 
various methods have been proposed to estimate its parameters 
[2,17,19].

However, the maximum-likelihood estimation method is current-
ly one of the most used methods of estimation, for its versatility and 
provides reliable results [10].

The maximum-likelihood estimation method allows us to estimate 
the unknown parameters of a statistical model. These parameters are 
obtained by maximizing the likelihood function of the model in ques-
tion [4].

2. Types of data

With the information from a historical record of data is possible 
to obtain indicators to estimate and understand the behavior of the 
equipment with respect to failures. Therefore, using appropriate meth-
odologies, it will be possible to set the proper maintenance policies to 
any equipment and their components.
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The data is considered complete when it is known the exact time 
of each system failure. In many cases the data contain uncertainties, 
i.e., it is not known the exact moment when the failure occurred. The 
data containing such uncertainty as to when the event occurred are 
regarded as incomplete or partial. Incomplete data can be classified 
into censored or truncated [8, 13].

Incomplete data give only part of the information about the failure 
time of the units under review. However, this information should not 
be ignored or treated as failure. In the absence of such data, it would 
not be possible to make good estimation parameters and thus make a 
proper analysis.

One of the most common types of censored data, which may arise 
in real cases, is Type-1 right censored data [9]. For Type-1 right cen-
sored data, all units of a system are observed up to the date of com-
pletion of the study. For this censorship scheme the time each unit is 
under observation is fixed, while the number of units that fail (uncen-
sored observations) is random.

If T is a random variable representing the failure time and Cd 
another random variable independent of T which corresponds to the 
end of the registration information (observation time). It is said that 
the time to failure is right censored when one does not know its exact 
value, only that its value is greater than Cd, with regard to item i (i = 
1, 2, ..., n). Therefore:
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The δi variable (censorship indicator) indicates whether Ti is cen-
sored or not. The obtained data can be represented by the pair (ti, δi) 
i.e. ti the failure time or censored time and δi the variable that indicates 
whether it concerns a failure or censorship, that is, (2):
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In the right censored data the failure time of the units with cen-
sored data it is just known to be greater than the operating time of the 
conclusion of the registration information. These right censored data 
are further classified into Type-1 if the recording of information is 
interrupted at a predetermined time and Type-2 censure if registration 
is completed when a predetermined number of failures occur [12].

3. The maximum-likelihood estimation method

As we have seen, in the particular case of the right censored data 
classified as Type-1 censorship, the recording of information is inter-
rupted at a predetermined time Cd > 0, such that ti is observed to occur 
before Cd, otherwise, one only knows that the failure time is greater 
than the observation time.

Let ti = t1, t2, ..., tn, n independent observations, where r records 
are failure times and (n - r) are censured information.

Let the probability density function, f(x, θ)  and the cumulative 
probability function F(x, θ), with the distribution parameters denoted 
by θ, the likelihood function for right censored data Type-1 is given 
by [18]:
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Where (x1, x2, ..., xn) is a sample of n independent observations of 
the random variable X and θ = (θ1, θ2, ..., θk) is the vector of unknown 
distribution parameters.

For the Weibull distribution with scale parameter η and shape pa-
rameter β, the likelihood function for the right censored data Type-1 
is given by:
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In many situations it is easier to achieve the maximization of the 
log of the likelihood function and, since the logarithm function is a 
monotonically increasing function, is equivalent to maximizing the 
likelihood function or the log-likelihood function.

By applying logarithm to eq. 4, it becomes:
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As the maximum-likelihood equations in many cases have no 
analytical solution to determine their solutions, it is needed to use 
numerical optimization methods. Among the possible numerical so-
lutions, in this paper the Expectation-Maximization (EM) algorithm 
was selected [3, 5, 15].

3.1. The Expectation-Maximization algorithm

The EM algorithm is an iterative process that can be used to 
calculate the maximum likelihood estimators in cases with incom-
plete data.

Let X be the set of complete data with the probability density 
function fc (x, θ) and Y the observed data. The corresponding log-
likelihood function to the full sample is represented by:

 ln , ,L x l xc cθ θ( ) = ( )  (6)

Each iteration of the EM algorithm involves two steps: step E 
(expectation) and step M (maximization), defined by [15],

Step E: To calculate Q kθ θ, ( )( ) , where:

 Q E l x yk
c

k
kθ θ θ δ θ

θ
, , , ,( ) −( )( ) = ( )
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1
 (7)

Step M: To find θ k +( )1  that maximizes Q kθ θ, ( )( ) , that is:

 
θ θ θk kQ+( ) ( )= ( )1 arg max ,

 Q Qk k kθ θ θ θ+( ) ( ) ( )( ) ≥ ( )1 , ,  (8)

The procedure is performed until the difference between the itera-
tion k and iteration k+1:

  = ( ) − ( )+( ) ( )L Lk kθ θ1  (9)

decrease to an acceptable value, with  > 0

In Step E the algorithm calculates the conditional expected value 
of the logarithm of the likelihood function for complete data given the 
observed sample and step M calculates its maximum.
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This algorithm requires an initial solution for the values of the 
distribution parameters, designated by θ(0). The selection of this initial 
solution requires particular attention to the extent that the algorithm 
convergence speed may become extremely slow due to a poor choice. 
Another aspect to take into account is the maximum likelihood equa-
tion can have multiple solutions corresponding to local maxima, so 
the choice of the starting solution becomes important.

A comparative study of various strategies in the choice of initial 
values can be found in Karlis and Xekalaki [11]. The results obtained 
by these authors demonstrate the importance of the choice of initial 
values, to have a reasonable convergence speed.

The figure 1 illustrates the EM algorithm procedure.

The EM algorithm has several advantages which stand out rela-
tive to other iterative algorithms:

The EM algorithm converges in a large variety of conditions,  –
that is, from an arbitrary data, θ(0) the algorithm usually finds a 
local maximum, except for a poor choice of initial  solution θ(0) 
or in the wrong formulation of the likelihood function.
The required analytical work is simpler than with other meth- –
ods, since only it is necessary to maximize the conditional ex-
pected value of the log-likelihood for complete data.
The EM algorithm is relatively easy to program and imple- –
ment.
During the iterations it is possible to control the convergence  –
and programming errors

However it also has some disadvantages:
The EM algorithm can converge slowly, even in some appar- –
ently simple problems and on issues where there is a lot of in-
complete information.
The EM algorithm does not have an integrated process for pro- –
ducing an estimate of the covariance matrix of the estimated 
parameters. But this disadvantage can be overcome by using 
appropriate methodology.
The EM algorithm does not guarantee convergence to the glo- –
bal maximum when there are multiple maximum sites. The ob-
tained estimate depends on the initial solution

3.2. EM algorithm with right censored data 

The observed data consists of (Yi, δi), with Yi = min (Ti, Cdi), 
where Cdi corresponds to the observation times, δi = 1 (Ti ≤ Cdi), 
corresponds to the non-censored data and δi = 0 (Ti > Cdi), to the 
censored data. 

In the step E of the algorithm it is required the calculation of the 
conditional expected value of the log-likelihood for complete data, 
given the observed sample. In this case the log-likelihood function to 
complete data is given by equation (10), for n data collected:
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The θ = (η, β) are the distribution parameters, δ = (δ1, δ2, ..., δn) is 
the vector indicator of censorship and y = (y1, y2, ..., yn) is the vector 
of observed data.

We have from equation (7):
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For the conditional expected value is first necessary to determine 
the expression of the corresponding conditional probability density 
function, f(y|y’) (y|y’). For this case is given by [16]:
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Where:  

Γ p x u e du is the upper incomplete gamma function
x
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Introducing equations (15) and (16) in equations (12) and (13):
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Fig. 1. EM algorithm procedure
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Thus, the expression referring to step E of the algorithm EM, 
Q(θ, θ(k)) with censored data to the right is given by the following 
equation:
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As mentioned above, the step M is intended to find the solution 
θ (k+1) which maximize Q(θ, θ (k)). 

In order to get the points that maximize the function it is necessary 
to solve the partial derivatives of the above equation and equal them 
to zero, as shown in the following equations:
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Thus, the solution for the estimation of the distribution parameters 
η is given by the following equation:
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With equation (22) for η parameter, it is possible to calculate the β 
parameter of the distribution.

The second derivative must be negative to ensure that the results 
obtained correspond to a maximum point. The second derivative 
equations are as follows:
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With this analysis it is possible to calculate the Weibull distri-
bution parameters β and η, through the knowledge of the maximum 
values of function Q.

4. Case study

The case study concerns the history of five centrifugal pumps 
failures of a petrochemical company, used to pump oil with similar 
density for the period 2006 to 2013.

From the collected data it can be seen that one of the pumps com-
ponents is responsible for an important number of failures. It is the 
mechanical seal which represents approximately 45% of the total 
number of failures. Thus, based on the assessment of these results, it 
justifies the need of further study on this component.

For the purposes of this study, we select only the data related to 
failures due to excessive leakage of fluid to the outside of the pumps. 
The reason for this consideration is due to the significant number of 
failures and to restrict the study for just one failure mode.

The possible failures between inspections are treated as complete 
data, as the centrifugal pumps in question are visually inspected by 
the user of the equipment at least every 8 hours. So, it was not con-
sidered the possible mistake between two inspections compared to 
the total time of the observation and it was assumed that the exact 
moment of failure was well known.

The last record in each pump does not correspond to a fault but 
at the end of the test, since the pumps continued in operation. Thus 
the last recording time of each pump was considered as right cen-
sored data.

For the estimated values of the Weibull distribution parameters 
by the maximum-likelihood method it was used the EM algorithm for 
right censored data as described in section 3.2.

For the algorithm implementation process it was used the statisti-
cal program R.

The autors used a manually written code in R software and also 
used some packages like for exemple, maxNR, boot and mass.

The initial  solution θ(0) was attributed by the result obtained by 
the least squares method. The iterative process stopped when the dif-
ference between the iteration k and iteration k+1, given by equation 
(9), was less than 0,1.

The following Table 1 shows the expected value for β̂  and η̂  for 
each of the mechanical seals applying the maximum-likelihood meth-
od with the EM algorithm, as described in this paper. The respective 
confidence intervals are also presented.

Table 1. Expected value of β̂  and η̂  (days) for each of the mechanical seals 
obtained with the maximum-likelihood method (EM) and respec-
tive confidence interval by the bootstrap-T method

Mechanical 
seals β̂ η̂  (days)

1 6,12 9,21 14,09 365,51 392,96 425,53

2 2,01 5,04 10,12 301,49 345,31 392,67

3 10,85 13,92 17,19 385,03 403,68 423,21

4 4,93 8,17 12,98 352,85 381,44 416,05

5 3,96 7,56 12,51 335,62 368,37 406,99
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Because the sample of data is small, it was used the bootstrap-t 
method in determining the confidence intervals with a confidence 
level of 95% [6, 7].

The bootstrap-t method allows the calculation of the confidence 
interval of the parameters of interest in particular in the case where the 
sample is small (n <30).

New samples are taken randomly from resampling the original 
sample. For the randomization of the process be minimized it is nec-
essary to perform a large number of resampling, B. With the generated 
bootstrap samples it is possible to calculate the standard deviation of 
B repetitions that will be used in the confidence intervals:

  (26)

Where:

  (27)

From the table of the t-Student distribution gets the value tc that:

  (28)

Thus, the bootstrap-t confidence interval with confidence level 
100 (1-α)% is given by:

  (29)

The number of resampling for the bootstrap method is equal to 1000. 
From the results obtained and presented in table 1, it can be noted that, all 
mechanical seals feature the shape parameter β >1. The values of the scale 
parameter η vary between 345.31 and 403.68 days of operation.

With the information obtained by the bootstrap method, it is possible 
to represent the confidence interval around the probability density func-
tion of the estimated Weibull distribution, as shown in Figure 2 to seal 1.

The estimation of the unknown parameters of the Weibull distri-
bution was also obtained, in the same system, with the least squares 
method, to compare with the results obtained by the EM algorithm. 

In Rinne is indicated how to obtain the estimates of the unknown 
parameters using least squares method.

The following Table 2 shows the expected value for β̂  and η̂  for 
each of the mechanical seals applying the least squares method.

The shape parameter, β, is higher by maximum likelihood 
method (EM algorithm) than the least squares method and in both 
is higher than 1.

For the scale parameter, η, the values obtained by the two methods 
are similar.

5. Conclusion

The prediction of failures of equipment for a given time horizon 
can only be considered in probabilistic terms, because there is always 
uncertainty about the time they will happen. Thus, this work has fo-
cused on the presentation of statistical techniques inherent to an esti-
mation process of the parameters of a theoretical probabilistic model 
that best fits the observed data.

Also, it showed the importance of the record of occurrences of 
failures during the use of equipment (historical record). This infor-
mation is essential for monitoring a system, and also for the correct 
performance of the maintenance activities.

However, some data may contain uncertainty regarding the 
time of occurrence of the failures and thus are regarded as incom-
plete or partial.

Due to the complexity of the analyzed data, in particular in the 
presence of right censored data, it was found that the equation from 
the maximum-likelihood method showed no analytical solution. So 
the solution presented in this work was using the EM algorithm.

In this work it was possible to validate the applicability of the 
EM algorithm to determine the solutions of the equation that is de-
rived from the maximum-likelihood method in the presence of in-
complete data.
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Fig. 2. Confidence interval around the probability density function of the esti-
mated Weibull distribution by the bootstrap method, seal 1

Table 2. Expected value of β̂  and η̂  (days) for each of the mechanical seals 
obtained with the least squares method

Mechanical seals β̂ η̂  (days)

1 8,76 388,72

2 4,26 338,17

3 12,54 415,15

4 7,68 386,71

5 6,55 363,42
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