PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional-order feedback control of a pneumatic servo-drive

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A fractional-order control strategy for a pneumatic position servo-system is presented in this paper. The idea of the fractional calculus application to control theory was introduced in many works, and its advantages were proved. This paper deals with the design of fractional order PIλDμ controllers, in which the orders of the integral and derivative parts, λ and μ, respectively, are fractional. Experiments with fractionalorder controller are performed under various conditions, which include position signal with different frequencies and amplitudes or a step position signal. The results show the effectiveness of the proposed schemes and verify their fine control performance for a pneumatic position servo-system.
Rocznik
Strony
53--59
Opis fizyczny
Bibliogr. 26 poz., wykr., rys., tab.
Twórcy
autor
  • Kielce University of Technology, Department of Automation and Robotics, Faculty of Mechatronics and Machine Design, Aleja Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • [1] C.-R. Rad and O. Hancu, An improved nonlinear modelling and identification methodology of a servo-pneumatic actuating system with complex internal design for high-accuracy motion control applications, Simul. Model. Pract. Theory. 75 (2017) 29–47. doi:10.1016/j.simpat.2017.03.008.
  • [2] J. Zwierzchowski, Design type air engine Di Pietro, in: P. Dancova (Ed.), Exp. Fluid Mech. 2016 (EFM16 ), E D P SCIENCES, 17 Ave Du Hoggar Parc D Activites Coutaboeuf Bp 112, F-91944 Cedex A, France, 2017. doi:10.1051/epjconf/201714302149.
  • [3] A. Saleem, B. Taha, T. Tutunji, and A. Al-Qaisia, Identification and cascade control of servo-pneumatic system using Particle Swarm Optimization, Simul. Model. Pract. Theory. 52 (2015) 164–179. doi:10.1016/j.simpat.2015.01.007.
  • [4] K. Khayati, P. Bigras, and L.-A. Dessaint, LuGre model-based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via LMI optimization, Mechatronics. 19 (2009) 535–547. doi:10.1016/j.mechatronics.2008.12.006.
  • [5] G.F. Bracha, Modeling a pneumatic cylinder with friction, in: V. Zolotarev, I and Radolf (Ed.), Eng. Mech. 2016, Acad Sci Czech Republic, Inst Thermomechanics, Dolejskova 5, Prague 8, 182 00, Czech Republic, 2016: pp. 90–93.
  • [6] P.A. Laski, Proportional valve with a piezoelectric actuator, in: EPJ Web Conf., 2017. doi:10.1051/epjconf/201714302064.
  • [7] J.E. Takosoglu, P.A. Laski, and S. Blasiak, Innovative modular pneumatic valve terminal with self-diagnosis, control and network communications, in: V. Fuis (Ed.), Eng. Mech. 2014, Acad Sci Czech Republic, Inst Thermomechanics, Dolejskova 5, Prague 8, 182 00, Czech Republic, 2014: pp. 644–647.
  • [8] D. Pietrala, The characteristics of a pneumatic muscle, in: P. Dancova (Ed.), Exp. Fluid Mech. 2016 (EFM16 ), E D P SCIENCES, 17 Ave Du Hoggar Parc D Activites Coutaboeuf Bp 112, F-91944 Cedex A, France, 2017. doi:10.1051/epjconf/201714302093.
  • [9] M.-K. Chang, J.-J. Liou, and M.-L. Chen, T–S fuzzy model-based tracking control of a one-dimensional manipulator actuated by pneumatic artificial muscles, Control Eng. Pract. 19 (2011) 1442–1449. doi:10.1016/j.conengprac.2011.08.002.
  • [10] H.P.H. Anh and K.K. Ahn, Hybrid control of a pneumatic artificial muscle (PAM) robot arm using an inverse NARX fuzzy model, Eng. Appl. Artif. Intell. 24 (2011) 697–716. doi:10.1016/j.engappai.2010.11.007.
  • [11] S.N. Syed Salim, M.F. Rahmat, A. ’Athif Mohd Faudzi, Z.H. Ismail, and N. Sunar, Position Control of Pneumatic Actuator Using Self-Regulation Nonlinear PID, Math. Probl. Eng. 2014 (2014) 1–12. doi:10.1155/2014/957041.
  • [12] A. Blim, L. Jarecki, and S. Blonski, Modeling of pneumatic melt drawing of polypropylene super-thin fibers in the Laval nozzle, Bull. Pol. Ac.: Tech. 62 (2014). doi:10.2478/bpasts-2014‒0005.
  • [13] C.A. Monje, Fractional-order systems and controls: Fundamentals and applications, Springer, London [u.a.], 2010.
  • [14] S. Blasiak, Time-fractional heat transfer equations in modeling of the non-contacting face seals, Int. J. Heat Mass Transf. 100 (2016) 79–88. doi:10.1016/j.ijheatmasstransfer.2016.04.040.
  • [15] M. Sowa, A subinterval-based method for circuits with fractional order elements, Bull. Pol. Ac.: Tech. 62 (2014). doi:10.2478/bpasts-2014‒0047.
  • [16] A. Tepljakov, Fractional-order Modeling and Control of Dynamic Systems, Springer International Publishing, Cham, 2017. doi:10.1007/978‒3‒319‒52950‒9.
  • [17] T. Marinov, N. Ramirez, and F. Santamaria, Fractional integration toolbox, Fract. Calc. Appl. Anal. 16 (2013). doi:10.2478/s13540‒013‒0042‒7.
  • [18] W. Kolaj, J. Mozaryn, and M. Syfert, PLC-PIDTuner: Application for PID Tuning with SIMATIC S7 PLC Controllers, in: 2016 21ST Int. Conf. METHODS Model. Autom. Robot., IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2016: pp. 306–311.
  • [19] M. Viteckova and A. Vitecek, Simple Digital Controller Tuning, in: Petras, I and Podlubny, I and Kacur, J and Nawrocka, A and Sapinski, B (Ed.), Proc. 2013 14TH Int. Carpathian Control Conf., IEEE, 345 E 47TH ST, New York, Ny 10017 USA, 2013: pp. 428–431.
  • [20] T. Żabiński and L. Trybus, Tuning P-PI and PI-PI controllers for electrical servos, Bull. Pol. Ac.: Tech. 58 (2010). doi:10.2478/v10175‒010‒0005‒7.
  • [21] M. Blasiak and S. Blasiak, Application of fractional calculus in harmonic oscilator, in: Eng. Mech. 2017, Acad Sci Czech Republic, Inst Thermomechanics, Dolejskova 5, Prague 8, 182 00, Czech Republic, 2017: pp. 146–149.
  • [22] I. Podlubny, Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers, IEEE Trans. Automat. Contr. 44 (1999) 208–214. doi:10.1109/9.739144.
  • [23] M. Zamani, M. Karimi-Ghartemani, N. Sadati, and M. Parniani, Design of a fractional order PID controller for an AVR using particle swarm optimization, Control Eng. Pract. 17 (2009) 1380–1387. doi:10.1016/j.conengprac.2009.07.005.
  • [24] W. Mitkowski, J. Kacprzyk, J. Baranowski, eds., Advances in the Theory and Applications of Non-integer Order Systems, Springer International Publishing, Heidelberg, 2013. doi:10.1007/978‒3‒319‒00933‒9.
  • [25] A. Babiarz, A. Czornik, J. Klamka, M. Niezabitowski, eds., Theory and applications of non-integer order systems: 8th conference on non-integer order calculus and its applications, Zakopane, Poland, Springer, Cham, 2017.
  • [26] C.A. Monje, B.M. Vinagre, V. Feliu, and Y. Chen, Tuning and auto-tuning of fractional order controllers for industry applications, Control Eng. Pract. 16 (2008) 798–812. doi:10.1016/j.conengprac.2007.08.006.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53591f39-8666-4b10-9db0-80e36e3d8a9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.