PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bearing capacity of tempered glass panel in point supported glass facades against in-plane load

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tempered glass panels in the point supported glass facade (PSGF) are usually subjected to large in-plane load. In order to investigate the bearing capacity of tempered glass panels against in-plane load, three tests are firstly carried out. Afterwards, finite element method (FEM) is adopted to study stresses around holes under different loading conditions and explore the influence of the in-plane load on the stress distribution of the glass panel. It is concluded that stresses around holes in tempered glass panels are principally affected by the in-plane load, while stresses at centers of the surface and edges are mainly controlled by the out-of-plane load. When the in-plane load is relatively high, the out-of-plane load is probably able to reduce stresses at some points around holes, contributing to the improvement of the load-bearing capacity of tempered glass panels. If the in-plane load is large enough, specimens are bound to experience state transitions which are caused by large plastic deformation of stainless steel bolt fittings and result in the rapid increase of stresses on glass panels. Therefore, by enhancing the shear strength of bolt fittings one can improve the bearing capacity of tempered glass panels in the PSGF against the in-plane load.
Rocznik
Strony
935--948
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Wuhan University, 430072 Wuhan, China
autor
  • Key Laboratory of Civil Engineering Safety and Durability of Education Ministry, Department of Civil Engineering, Tsinghua University, 100084 Beijing, China
autor
  • China road & Bridge Corporation, 100011 Beijing, China
autor
  • School of Civil Engineering, Wuhan University, 430072 Wuhan, China
autor
  • Key Laboratory of Civil Engineering Safety and Durability of Education Ministry, Department of Civil Engineering, Tsinghua University, 100084 Beijing, China
Bibliografia
  • [1] Y. Wang, Q.S. Wang, J.H. Sun, L.H. He, K.M. Liew, Effects of fixing point positions on thermal response of four point-supported glass facades, Construction and Building Materials 73 (2014) 235–246.
  • [2] Y. Wang, Y. Wu, Q.S. Wang, et al., Numerical study on fire response of glass facades in different installation forms, Construction and Building Materials 61 (2014) 172–180.
  • [3] Y.J. Shi, L.L. Wu, Y.Q. Wang, K.Y. Luo, Y. Xu, FEM analysis and experimental study on monolayer cable net for glass facades: dynamic properties, Advances in Structural Engineering 10 (2007) 383–395.
  • [4] J.H. Nielsen, J.F. Olesen, P.N. Poulsen, H. Stang, Finite element implementation of a glass tempering model in three dimensions, Computers & Structures 88 (2010) 963–972.
  • [5] Q.S. Wang, G.Z. Shao, Y. Wang, et al., Thermal breakage and fallout behaviors of non-tempered glass under the effect of water film, Journal of Fire Sciences 33 (2015) 390–404.
  • [6] K.T. Gürsel, F. Özgül, Investigation of impact characteristics of tempered vehicle and vessel glasses, Materialwissenschaft und Werkstofftechnik 45 (2014) 26–38.
  • [7] R. Dugnani, R.J. Zednik, P. Verghese, Analytical model of dynamic crack evolution in tempered and strengthened glass plates, International Journal of Fracture 190 (2014) 75–86.
  • [8] A. Koike, S. Akiba, T. Sakagami, K. Hayashi, S. Ito, Difference of cracking behavior due to Vickers indentation between physically and chemically tempered glasses, Journal of Non- Crystalline Solids 358 (2012) 3438–3444.
  • [9] J. Kong, J.H. Kim, K. Chung, Residual stress analysis with improved numerical methods for tempered plate glasses based on structural relaxation model, Metals and Materials International 13 (2007) 67–75.
  • [10] J.H. Nielsen, J.F. Olesen, P.N. Poulsen, H. Stang, Simulation of residual stresses at holes in tempered glass: a parametric study, Materials and Structures 43 (2010) 947–961.
  • [11] H. Aben, D. Lochegnies, Y. Chen, J. Anton, M. Paemurru, M. Õis, A new approach to edge stress measurement in tempered glass panels, Experimental Mechanics 55 (2015) 483–486.
  • [12] Z.P. Ni, S.C. Lu, L. Peng, Experimental study on fire performance of double-skin glass facades, Journal of Fire Sciences 30 (2012) 457–472.
  • [13] Y.Q. Wang, L.L. Wu, Y.J. Shi, F. Sun, K.Y. Luo, Y. Xu, FEM analysis and experimental study on monolayer cable net for glass facades: static performance, Advances in Structural Engineering 10 (2007) 371–382.
  • [14] G. Campione, S. Benfratello, C. Cucchiara, G. Minafò, Flexural behaviour of glass panels under dead load and uniform lateral pressure, Engineering Structures 49 (2013) 664–670.
  • [15] R.Q. Feng, J.H. Ye, Y. Wu, S.Z. Shen, Mechanical behavior of glass panels supported by clamping joints in cable net facades, International Journal of Steel Structures 12 (2012) 15–24.
  • [16] A. Fam, S. Rizkalla, Structural performance of laminated and unlaminated tempered glass under monotonic transverse loading, Construction and Building Materials 20 (2006) 761–768.
  • [17] K. Pankhardt, Investigation on load bearing capacity of glass panes, Periodica Polytechnica-Civil Engineering 52 (2008) 73–82.
  • [18] K. Pankhardt, G.L. Balázs, Temperature dependent load bearing capacity of laminated glass panes, Periodica Polytechnica-Civil Engineering 54 (2010) 11–22.
  • [19] CECS 127, Technical Specification for Point Supported Glass Curtain Wall, China Association for Engineering Construction Standardization, Beijing, 2001 (in Chinese).
  • [20] S. Sivanerupan, J.L. Wilson, E.F. Gad, N.T.K. Lam, In-plane drift capacity of contemporary point fixed glass facade systems, Journal of Architectural Engineering 20 (2014), 04013002 (9 pp.).
  • [21] L. Biolzi, S. Cattaneo, G. Rosati, Progressive damage and fracture of laminated glass beams, Construction and Building Materials 24 (2010) 577–584.
  • [22] F. Bernard, L. Daudeville, Point fixings in annealed and tempered glass structures: modeling and optimization of bolted connections, Engineering Structures 31 (2009) 946–955.
  • [23] CECS 410, Technical Specification for Stainless Steel Structures, China Planning Press, Beijing, 2015 (in Chinese).
  • [24] J. Schultz, D. Stahl, C. Stutzki, Experimental investigation of numerical design method for point-supported glass, Journal of Architectural Engineering 18 (2012) 44–53.
  • [25] D.V. Kubair, Stress concentration factor in functionally graded plates with circular holes subjected to anti-plane shear loading, Journal of Elasticity 114 (2014) 179–196.
  • [26] T. Pyttel, H. Liebertz, J. Cai, Failure criterion for laminated glass under impact loading and its application in finite element simulation, International Journal of Impact Engineering 38 (2011) 252–263.
  • [27] A. Anandarajah, Computational Methods in Elasticity and Plasticity: Solids and Porous Media, Springer Science + Business Media, New York, 2010.
  • [28] M. Jabareen, E. Hanukah, M.B. Rubin, A ten node tetrahedral Cosserat Point Element (CPE) for nonlinear isotropic elastic materials, Computational Mechanics 52 (2013) 257–285.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-535727d3-6e09-40d0-a89a-dac52f8b9ae4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.