PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of terrestrial laser scanning measurements for wind turbine blade condition surveying

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wind turbines are among the key equipment needed for eco-friendly generation of electricity. Maintaining wind turbines in excellent technical condition is extremely important not only for safety but also for efficient operation. Studies indicate that defects in the external structure of a turbine blade reduce energy production efficiency. This research investigated the potential of the terrestrial laser scanning technology to examine the technical conditions of wind turbine blades. The main aim of the study was to examine whether terrestrial laser scanning measurements can be valuable for wind turbine blade condition surveying. The investigation was based on the radiometric analyses of point clouds, which forms the novelty of the present study. Condition monitoring focuses on the detection of defects, such as cracks, cavities, or signs of erosion. Moreover, this study consisted of two stages. The next objective entailed the development and examination of two different measurement methods. It was then identified which method is more advantageous by analysing their effectiveness and other economic considerations.
Rocznik
Strony
403--422
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Civil Engineering and Transport Discipline, Doctoral School of the Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland
  • Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland
  • Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland
Bibliografia
  • [1] WindEurope. (2022). Wind energy in Europe: 2021 Statistics and the outlook for 2022-2026. https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2021-statistics-and-the-outlook-for-2022-2026/#findings
  • [2] Zagubień, A., & Wolniewicz, K. (2019). The impact of supporting tower on wind turbine noise emission. Applied Acoustics, 155, 260-270. https://doi.org/10.1016/J.APACOUST.2019.05.032
  • [3] Masek, R. (2022). Naprawa oraz wzmocnienie krawędzi natarcia łopat turbin wiatrowych. BELSE. https://www.belse.com.pl/pl/artykuly/naprawa-oraz-wzmocnienie-krawedzi-natarcia-lopat-turbin-wiatrowych
  • [4] Gaudern, N. (2014, June). A practical study of the aerodynamic impact of wind turbine blade leading edge erosion. In Journal of Physics: Conference Series (Vol. 524, No. 1, p. 012031). IOP Publishing. https://doi.org/10.1088/1742-6596/524/1/012031
  • [5] Sareen, A., Sapre, C. A., & Selig, M. S. (2014). Effects of leading edge erosion on wind turbine blade performance. Wind energy, 17(10), 1531-1542. https://doi.org/10.1002/we.1649
  • [6] Tchakoua, P., Wamkeue, R., Ouhrouche, M., Slaoui-hasnaoui, F., Tameghe, T. A., & Ekemb, G. (2014). Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges. Energies, 7, 2595-2630. https://doi.org/10.3390/en7042595
  • [7] García Márquez, F. P., Tobias, A. M., Pinar Pérez, J. M., & Papaelias, M. (2012). Condition monitoring of wind turbines: Techniques and methods. Renewable Energy, 46, 169-178. https://doi.org/10.1016/J.RENENE.2012.03.003
  • [8] Soua, S., Van Lieshout, P., Perera, A., Gan, T. H., & Bridge, B. (2013). Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring. Renewable Energy, 51, 175-181. https://doi.org/10.1016/J.RENENE.2012.07.004
  • [9] Liu, W., Tang, B., & Jiang, Y. (2010). Status and problems of wind turbine structural health monitoring techniques in China. Renewable Energy, 35(7), 1414-1418. https://doi.org/10.1016/J.RENENE.2010.01.006
  • [10] Helming, P., Freyberg, A. Von, Sorg, M., & Fischer, A. (2021). Wind Turbine Tower Deformation Measurement Using Terrestrial Laser Scanning on a 3.4 MW Wind Turbine. Energies, 14, 1-14. https://doi.org/10.3390/en14113255
  • [11] Dilek, A. U., Oguz, A. D., Satis, F., Gokdel, Y. D., & Ozbek, M. (2019). Condition monitoring of wind turbine blades and tower via an automated laser scanning system. Engineering Structures, 189, 25-34. https://doi.org/10.1016/J.ENGSTRUCT.2019.03.065
  • [12] Pierce, S. G., Burnham, K., McDonald, L., MacLeod, C. N., Dobie, G., Summan, R., & McMahon, D. (2018, July). Quantitative inspection of wind turbine blades using UAV deployed photogrammetry. In 9th European Workshop on Structural Health Monitoring (EWHM 2018).
  • [13] Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., & Fieguth, P. (2015). A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Advanced Engineering Informatics, 29(2), 196-210. https://doi.org/10.1016/j.aei.2015.01.008
  • [14] Dong, C. Z., & Catbas, F. N. (2021). A review of computer vision-based structural health monitoring at local and global levels. Structural Health Monitoring, 20(2), 692-743. https://doi.org/10.1177/1475921720935585
  • [15] Hoang, N. D. (2018). Image Processing-Based Recognition of Wall Defects Using Machine Learning Approaches and Steerable Filters. Computational Intelligence and Neuroscience, 2018, 1-18. https://doi.org/10.1155/2018/7913952
  • [16] Zhou, S., & Song, W. (2020). Deep learning-based roadway crack classification using laser-scanned range images: A comparative study on hyperparameter selection. Automation in Construction, 114 (October 2019), 1-17. https://doi.org/10.1016/j.autcon.2020.103171
  • [17] Guo, J., Liu, C., Cao, J., & Jiang, D. (2021). Damage identification of wind turbine blades with deep convolutional neural networks. Renewable Energy, 174, 122-133. https://doi.org/10.1016/j.renene.2021.04.040
  • [18] Cabo, C., Ordóñez, C., & Argüelles-Fraga, R. (2017). An algorithm for optimizing terrestrial laser scanning in tunnels. Automation in Construction, 83, 163-168. https://doi.org/10.1016/j.autcon.2017.08.028
  • [19] Lewińska, P., Róg, M., Żądło, A., & Szombara, S. (2022). To save from oblivion: Comparative analysis of remote sensing means of documenting forgotten architectural treasures - Zagórz Monastery complex, Poland. Measurement, 189, 1-16. https://doi.org/10.1016/J.MEASUREMENT.2021.110447
  • [20] Suchocki, C., Jagoda, M., Obuchovski, R., Šlikas, D., & Sužiedelytė-Visockienė, J. (2018). The properties of terrestrial laser system intensity in measurements of technical conditions of architectural structures. Metrology and Measurement Systems, 25(4), 779-792. https://doi.org/10.24425/mms.2018.124886
  • [21] Kregar, K., Ambrožič, T., Kogoj, D., Vezočnik, R., & Marjetič, A. (2015). Determining the inclination of tall chimneys using the TPS and TLS approach. Measurement, 75, 354-363. https://doi.org/10.1016/J.MEASUREMENT.2015.08.006
  • [22] Janowski, A., Bobkowska, K., & Szulwic, J. (2018). 3D modelling of cylindrical-shaped objects from lidar data - an assessment based on theoretical modelling and experimental data. Metrology and Measurement Systems, 25(1), 47-56. https://doi.org/10.24425/118156
  • [23] Wojtkowska, M., Kedzierski, M., & Delis, P. (2021). Validation of terrestrial laser scanning and artificial intelligence for measuring deformations of cultural heritage structures. Measurement, 167, 1-18. https://doi.org/10.1016/J.MEASUREMENT.2020.108291
  • [24] Matwij, W., Gruszczyński, W., Puniach, E., & Ćwiąkała, P. (2021). Determination of underground mining-induced displacement field using multi-temporal TLS point cloud registration. Measurement, 180, 1-14. https://doi.org/10.1016/J.MEASUREMENT.2021.109482
  • [25] Tysiac, P., Miskiewicz, M., & Bruski, D. (2022). Bridge Non-Destructive Measurements Using a Laser Scanning during Acceptance Testing: Case Study. Materials, 15(23), 1-21. https://doi.org/10.3390/ma15238533
  • [26] Nowak, R., Kania, T., Rutkowski, R., & Ekiert, E. (2022). Research and TLS (LiDAR) Construction Diagnostics of Clay Brick Masonry Arched Stairs. Materials, 15(2), 1-19. https://doi.org/10.3390/ma15020552
  • [27] Hawley, C. J., & Gräbe, P. J. (2022). Water leakage mapping in concrete railway tunnels using LiDAR generated point clouds. Construction and Building Materials, 361. https://doi.org/10.1016/J.CONBUILDMAT.2022.129644
  • [28] Stałowska, P., Suchocki, C., & Rutkowska, M. (2022). Crack detection in building walls based on geometric and radiometric point cloud information. Automation in Construction, 134, 1-19. https://doi.org/10.1016/J.AUTCON.2021.104065
  • [29] Suchocki, C. (2020). Comparison of Time-of-Flight and Phase-Shift TLS Intensity Data for the Diagnostics Measurements of Buildings. Materials, 13(2), 1-18. https://doi.org/10.3390/ma13020353
  • [30] Xu, T., Xu, L., Yang, B., Li, X., & Yao, J. (2017). Terrestrial laser scanning intensity correction by piecewise fitting and overlap-driven adjustment. Remote Sensing, 9(11), 1-16. https://doi.org/10.3390/rs9111090
  • [31] Suchocki, C., Damięcka-Suchocka, M., Katzer, J., Janicka, J., Rapiński, J., & Stałowska, P. (2020). Remote Detection of Moisture and Bio-Deterioration of Building Walls by Time-of-Flight and Phase-Shift Terrestrial Laser Scanners. Remote Sensing, 12(11)(1708), 1-15. https://doi.org/10.3390/rs12111708
  • [32] Kaasalainen, S., Jaakkola, A., Kaasalainen, M., Krooks, A., & Kukko, A. (2011). Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sensing, 3(10), 1-15. https://doi.org/10.3390/rs3102207
  • [33] Suchocki, C., Katzer, J., & Rapiński, J. (2018). Terrestrial Laser Scanner as a Tool for Assessment of Saturation and Moisture Movement in Building Materials. Periodica Polytechnica Civil Engineering, 62(3), 1-6. https://doi.org/10.3311/PPci.11406
  • [34] Pesci, A., & Teza, G. (2008). Effects of surface irregularities on intensity data from laser scanning: An experimental approach. Annals of Geophysics, 51(5/6), 839-848. https://doi.org/10.4401/ag-4462
  • [35] Voegtle, T., Schwab, I., & Landes, T. (2008). Influences of different materials on the measurements of a terrestrial laser scanner (TLS). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B5), 1061-1066.
  • [36] Soudarissanane, S., Lindenbergh, R., Menenti, M., & Teunissen, P. (2009). Incidence Angle Influence on the Quality of Terrestrial Laser Scanning Points. IAPRS, 38, 83-88.
  • [37] Kowalska, M. (2020). Opracowanie metodyki wykorzystania danych z naziemnego skaningu laserowego w pomiarach kontrolnych obiektów inżynierskich. [Doctoral dissertation, Warsaw University of Technology].
  • [38] Tan, K., & Cheng, X. (2016). Correction of incidence angle and distance effects on TLS intensity data based on reference targets. Remote Sensing, 8(3), 1-20. https://doi.org/10.3390/rs8030251
  • [39] Hwang, J. S., Platenkamp, D. J., & Beukema, R. P. (2021). A Literature Survey on Remote Inspection of Offshore Wind Turbine Blades. Royal NLR - Netherlands Aerospace Centre.
  • [40] Power Plant Drawing at PaintingValley.com. Explore collection of Power Plant Drawing. https://paintingvalley.com/power-plant-drawing
Uwagi
1. The authors would like to express their gratitude to the Energia-Eco company for its cooperation, support and the opportunities to conduct research on its wind turbines.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-534e5c4a-eaf7-48f9-8cc3-a7b014e5a499
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.