PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-technique characterisation of InAs-on-GaAs wafers with circular defect pattern

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
The article presents the results of diameter mapping for circular-symmetric disturbance of homogeneity of epitaxially grown InAs (100) layers on GaAs substrates. The set of acceptors (beryllium) doped InAs epilayers was studied in order to evaluate the impact of Be doping on the 2-inch InAs-on-GaAs wafers quality. During the initial identification of size and shape of the circular pattern, non-destructive optical techniques were used, showing a 100% difference in average roughness between the wafer centre and its outer part. On the other hand, no volumetric (bulk) differences are detectable using Raman spectroscopy and highresolution X-ray diffraction. The correlation between Be doping level and circular defect pattern surface area has been found.
Rocznik
Strony
art. no. e144564
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • VIGO Photonics S.A., Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  • Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
  • Department of Electronics Fundamentals, Rzeszów University of Technology, W. Pola 12, 35-959 Rzeszów, Poland
  • Institute of Computer and Information Systems, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
Bibliografia
  • [1] Mackenzie, D. M. A. et al. Wafer-scale graphene quality assessment using micro four-point probe mapping. Nanotechnology 31, 225709 (2020). https://doi.org/10.1088/1361-6528/ab7677
  • [2] Jung, J.-R. & Yum, B.-J. Uniformity and signal-to-noise ratio for static and dynamic parameter designs of deposition processes. Int. J. Adv. Manuf. Technol. 54, 619-628 (2011). https://doi.org/10.1007/s00170-010-2957-z
  • [3] Yager, T., Lartsev, A., Yakimova, R., Lara-Avila, S. & Kubatkin, S. Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC. Carbon 87, 409-414 (2015). http://doi.org/10.1016/j.carbon.2015.02.058
  • [4] El Harrouni, I., Bluet, J. M., Ziane, D., Sartel, C. & Guillot, G. Microscopic defects and homogeneity investigations in 4H-SiC epitaxial wafers by UV scanning photoluminescence spectroscopy. Eur. Phys. J. Appl. Phys. 27, 235-238 (2004). https://doi.org/10.1051/epjap:2004105
  • [5] Xu, Z. L., Xu, X. P., Cui, C. C. & Huang, H. A new uniformity coefficient parameter for the quantitative characterization of a textured wafer surface and its relationship with the photovoltaic conversion efficiency of monocrystalline silicon cells. Sol. Energy 191, 210-218 (2019). https://doi.org/10.1016/j.solener.2019.08.028
  • [6] Lee, J. L. S., Gilmore, I. S., Seah, M. P. & Fletcher, I. W. Topography and field effects in secondary ion mass spectrometry - Part I: conducting samples. J. Am. Soc. Mass. Spectrom. 22, 1718-1728 (2011). https://doi.org/10.1007/s13361-011-0201-1
  • [7] Shojaei, B. et al. Full-wafer strain and relaxation mapping of Hg1-xCdxTe multilayer structures grown on Cd1-yZnyTe substrates. J. Electron. Mater. 48, 6118-6123 (2019). https://doi.org/10.1007/s11664-019-07289-1
  • [8] Knehr, E. et al. Wafer-level uniformity of atomic-layer-deposited niobium nitride thin films for quantum devices. J. Vac. Sci. Technol. A 39, 052401 (2021). https://doi.org/10.1116/6.0001126
  • [9] Shimizu, E., Sugawara, S. & Nakata, H. Computational analysis of wafer temperature non-uniformity in MOVPE system. J Cryst. Growth 266, 340-346 (2004). https://doi.org/10.1016/j.jcrysgro.2004.02.064
  • [10] Koo, J. & Hwang, S. A unified defect pattern analysis of wafer maps using density-based clustering. IEEE Access 9, 78873-78882 (2021). https://doi.org/10.1109/Access.2021.3084221
  • [11] Hsu, C. Y., Chen, W. J. & Chien, J. C. Similarity matching of wafer bin maps for manufacturing intelligence to empower Industry 3.5 for semiconductor manufacturing. Comput. Ind. Eng. 142, 106358 (2020). https://doi.org/10.1016/j.cie.2020.106358
  • [12] Dunn, T., Lee, C., Tronolone, M. & Shorey, A. Metrology for Characterization of Wafer Thickness Uniformity During 3DS-IC. in 2012 IEEE 62nd Electronic Components and Technology Conference (ECTC) 1239-1244 (2012). https://doi.org/10.1109/ECTC.2012.6248993
  • [13] Nagano, M., Mitani, T., Ueda, K., Zettsu, N. & Yamamura, K. Improvement of thickness uniformity of bulk silicon wafer by numerically controlled local wet etching. J. Cryst. Growth 311, 2560-2563 (2009). https://doi.org/10.1016/j.jcrysgro.2009.01.131
  • [14] Rogalski, A., Antoszewski, J. & Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009). https://doi.org/10.1063/1.3099572
  • [15] Rogalski, A. Infrared and Terahertz Detectors. Third Edition. (CRC Press, Boca Raton, 2019). https://doi.org/10.1201/b21951
  • [16] Dai, T. J. et al. Synthesis of few-layer 2H-MoSe2 thin films with wafer-level homogeneity for high-performance photodetector, Nanophotonics 7, 1959-1969 (2018). https://doi.org/10.1515/nanoph-2018-0153
  • [17] Shi, M. L. et al. Top-down integration of molybdenum disulphide transistors with wafer-scale uniformity and layer controllability. Small 13, 1603157 (2017). https://doi.org/10.1002/smll.201603157
  • [18] Zhang, T. B. et al. High performance few-layer MoS2 transistor arrays with wafer level homogeneity integrated by atomic layer deposition. 2d Mater. 5, 5015028 (2018). https://doi.org/10.1088/2053-1583/aa9ea5
  • [19] Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656-660 (2015). https://doi.org/10.1038/nature14417
  • [20] Pawlak, M., Ramza, K. & Streza, M. Simultaneously mapping of in-depth thermal diffusivity and effective infrared absorption coefficient of silicon-doped gallium arsenide wafer using lock-in thermography. Anal. Lett. 52, 93–101 (2019). https://doi.org/10.1080/00032719.2017.1405966
  • [21] Yeh, T. T. et al. Photoexcited carrier and phonon morphology of InSb observed with an ultrafast pump-probe microscope. J Opt. 23, 074004 (2021). https://doi.org/10.1088/2040-8986/ac05d0
  • [22] Chen, X. R., Zhu, L. Q. & Shao, J. Spatially resolved and two-dimensional mapping modulated infrared photoluminescence spectroscopy with functional wavelength up to 20 um. Rev. Sci. Instrum. 90, 093106 (2019). https://doi.org/10.1063/1.5111788
  • [23] Pal, S. et al. Self-catalyst assisted and catalyst-free epitaxial growth of InAs on Ge (111): Role of substrate surface and evolution of polytypism. J. Vac. Sci. Technol. A 35, 061501 (2017). https://doi.org/10.1116/1.4996104
  • [24] Abouzaid, O. O-band emitting InAs quantum dots grown by MOCVD on a 300 mm Ge-buffered Si (001) substrate. Nanomaterials 10, 2450 (2020). https://doi.org/10.3390/nano10122450
  • [25] Tatsugi, S., Sugiyama, R. & Yamaguchi, K. Photoluminescence Mapping Analysis of In-Plane Ultrahigh-Density InAs/GaAsSb Quantum Dot Layers. in 2019 Compound Semiconductor Week (CSW) 112-113 (2019). http://toc.proceedings.com/49884webtoc.pdf
  • [26] Selvidge, J. et al. Non-radiative recombination at dislocations in InAs quantum dots grown on silicon. Appl. Phys. Lett. 115, 131102 (2019). https://doi.org/10.1063/1.5113517
  • [27] Aseev, P. Selectivity map for molecular beam epitaxy of advanced III-V quantum nanowire network. Nano Lett. 19, 218-227 (2019). https://doi.org/10.1021/acs.nanolett.8b03733
  • [28] Konemann, F. et al. Nanoscale Scanning Probe Thermometry. in 2018 24th International Workshop on Thermal Investigations of ICs and Systems (Therminic) 1-6 (2018). https://doi.org/10.1109/THERMINIC.2018.8593312
  • [29] Santos, T. G. et al. Effect of electric field non-uniformity on the differences between I-V characteristics of QWIP devices fabricated on the same wafer. Sens. Actuator A Phys. 301, 111725 (2020). https://doi.org/10.1016/j.sna.2019.111725
  • [30] Chen, X. R. et al. Modulated photoluminescence mapping of long-wavelength infrared InAs/GaSb type-ii superlattice: in-plane optoelectronic uniformity. Phys. Rev. Appl. 15, 044007 (2021). https://doi.org/10.1103/PhysRevApplied.15.044007
  • [31] Kwan, D. C. M. Optical and structural investigation of a 10 um InAs/GaSb type-II superlattice on GaAs. Appl. Phys. Lett. 118, 203102 (2021). https://doi.org/10.1063/5.0045703
  • [32] Meng, C. X. et al. Investigation of a noise source and its impact on the photocurrent performance of long-wave-infrared InAs/GaSb type-II superlattice detectors. Opt Express 28, 14753-14761 (2020). https://doi.org/ 10.1364/Oe.386920
  • [33] Dyksik, M. et al. Submonolayer uniformity of type II InAs/GaInSb w-shaped quantum wells probed by full-wafer photoluminescence mapping in the mid-infrared spectral range. Nanoscale Res. Lett. 10, 402 (2015). https://doi.org/10.1186/s11671-015-1104-z
  • [34] Rouis, W. et al. Local photocurrent mapping of InAs/InGaAs/GaPts intermediate-band solar cells using scanning near-field optical microscopy. Sol. Energy Mater. Sol. Cells 144, 324-330 (2016). https://doi.org/10.1016/j.solmat.2015.09.026
  • [35] Stibal, R., Müller, S. & Jantz, W. Topographic electrical characterization of semi-insulating GaAs, InP and SiC substates. in Compound Semiconductor Manufacturing Expo (CS-MAX) 235-237 (2002).
  • [36] Sugiyama, H., Teranishi, A., Suzuki, S. & Asada, M. High-uniformity InP-based resonant tunneling diode wafers with peak current density of over 6 x 10(5) A/cm(2) grown by metal-organic vapor-phase epitaxy. J Cryst. Growth 336, 24-28 (2011). https://doi.org/10.1016/j.jcrysgro.2011.09.010
  • [37] Joo, S. & Liang, H. In Situ characterization of triboelectrochemical effects on topography of patterned copper surfaces. J. Electron. Mater. 42, 979-987 (2013). https://doi.org/10.1007/s11664-013-2486-2
  • [38] Zhang, P. Effects of Surface Roughness on Electrical Contact, RF Heating and Field Enhancement. (The University of Michigan, 2012). https://deepblue.lib.umich.edu/bitstream/handle/2027.42/959 29/umpeng_1.pdf?sequence=1
  • [39] Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264-3294 (2013). https://doi.org/10.1002/adma.201205076
  • [40] Wu, J. et al. Photoluminescence plasmonic enhancement in InAs quantum dots coupled to gold nanoparticles. Mater. Lett. 65, 3605-3608 (2011). https://doi.org/10.1016/j.matlet.2011.08.019
  • [41] Benyahia, D. et al. Molecular beam epitaxial growth and characteri-zation of InAs layers on GaAs (001) substrate. Opt. Quantum Electron. 48, 428 (2016). https://doi.org/10.1007/s11082-016-0698-4
  • [42] Wróbel, J. et al. Structural and optical characterization of the high quality Be-doped InAs epitaxial layer grown on GaAs substrate. Proc. SPIE 10830, 108300S (2018). https://doi.org/10.1117/12.2503624
  • [43] Lim, M. & Bae, S. J. Spatial monitoring of wafer map defect data based on 2D wavelet spectrum analysis. Appl. Sci. 9, 5518 (2019). https://doi.org/10.3390/app9245518
  • [44] van der Velden, P. Chemical mechanical polishing with fixed abrasives using different subpads to optimize wafer uniformity. Microelectron. Eng. 50, 41-46 (2000). https://doi.org/10.1016/S0167-9317(99)00262-2
  • [45] Park, J., Hong, S., Lee, S., Jin, Y. & Kim, T. Investigation of step structure in CMP retainer ring to improve within-wafer non-uniformity. J. Mech. Sci. Technol. 33, 3391-3395 (2019). https://doi.org/10.1007/s12206-019-0634-1
  • [46] Lee, K., Lee, D., Jeong, S., Lee, D. & Jeong, H. Effect of spray nozzle position on pad temperature distribution and wafer non-uniformity. J. Mech. Sci. Technol. 33, 5677-5682 (2019). https://doi.org/10.1007/s12206-019-1110-7
  • [47] Ramanan, N., Kozman, A. & Sims, J. B. On the differences between wafer and bake plate temperature uniformity in proximity bake: A theoretical and experimental study. Proc. SPIE 3999, 890-898 (2000). https://doi.org/10.1117/12.388375
  • [48] Li, Z. M. et al. Temperature uniformity of wafer on a large-sized susceptor for a nitride vertical MOCVD reactor. Chin. Phys. Lett. 29, 030701 (2012). https://doi.org/10.1088/0256-307x/29/3/030701
  • [49] Hoffmann, V. et al. Uniformity of the wafer surface temperature during MOVPE growth of GaN-based laser diode structures on GaN and sapphire substrate. J. Cryst. Growth 315, 5-9 (2011). https://doi.org/10.1016/j.jcrysgro.2010.09.048
  • [50] Hardtdegen, H. et al. On the influence of gas inlet configuration with respect to homogeneity in a horizontal single wafer MOVPE reactor. J. Cryst. Growth 223, 15-20 (2001). https://doi.org/10.1016/S0022-0248(00)00969-6
  • [51] Ye, H. et al. MBE growth optimization of InAs (001) homoepitaxy. J. Vac. Sci. Technol. B 31, 03C135 (2013). https://doi.org/10.1116/1.4804397
  • [52] Ohtake, A., Mano, T. & Sakuma, Y. Strain relaxation in InAs heteroepitaxy on lattice-mismatched substrates. Sci. Rep. 10, 4606 (2020). https://doi.org/10.1038/s41598-020-61527-9
  • [53] Benyahia, D. et al. Molecular beam epitaxial growth and charac-terization of InAs layers on GaAs (001) substrate, Opt. Quantum Electron. 48, 428 (2016). https://doi.org/10.1007/s11082-016-0698-4
  • [54] Geurts, J. The characterization of semiconductor layer and interface quality with special reference to Raman spectroscopy. Prog. Cryst. Growth Charact. Mater. 32, 185-224 (1996). https://doi.org/10.1016/0960-8974(96)00003-4
  • [55] Feng, Z. C. et al. Optical characterization and mapping of four-inch InSb epitaxial thin films grown on GaAs by turbo disk metalorganic chemical vapor deposition. MRS Online Proc. Library Archive 450, 61-66 (1997). https://doi.org/10.1557/PROC-450-61
  • [56] Carles, R., Saint-Cricq, N., Renucci, J. B., Renucci, M. A. & Zwick, A. Second-order Raman scattering in InAs. Phys. Rev. B 22, 4804-4815 (1980). https://doi.org/10.1103/PhysRevB.22.4804
  • [57] Tenne, D. A. et al. Raman study of self-assembled GaAs and AlAs islands embedded in InAs. Phys. Rev. B 61, 13785-13790 (2000). https://doi.org/10.1103/PhysRevB.61.13785
  • [58] Grodecki, K., Murawski, K., Michalczewski, K., Jankiewicz, B. & Martyniuk, P. InAsSb mole fraction determination using Raman low energy modes. Opt. Mater. Express 10, 149-154 (2020). https://doi.org/10.1364/OME.10.000149
  • [59] Vorlı́ček, V., Železný, V., Tiwari, A. N., Krejci, M. & Zogg, H. Determination of the crystallographic orientation of CuInSe2 thin films by Raman and infrared spectroscopy. J. Appl. Phys. 82, 5484-5487 (1997). https://doi.org/10.1063/1.365576
  • [60] Hushur, A., Manghnani, M. H. & Narayan, J. Raman studies of GaN/sapphire thin film heterostructures. J. Appl. Phys. 106, 054317 (2009). https://doi.org/10.1063/1.3213370
  • [61] Wang, J., Chen, D., Xu, Y., Liu, Q. & Zhang, L. Influence of the crystal texture on Raman spectroscopy of the AlN films prepared by pulse laser deposition. J. Spectrosc. 2013, 103602 (2013). https://doi.org/10.1155/2013/103602
  • [62] Cai, L. C., Chen, H., Bao, C. L., Huang, Q. & Zhou, J. M. Raman spectroscopic studies of InAs epilayers grown on the GaAs (001) substrates. J. Cryst. Growth 253, 112-116 (2003). https://doi.org/10.1016/S0022-0248(03)01034-0
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. This work has been completed with the financial support under the program of the Ministry of Education and Science (MEiN): “Regional Initiative of Excellence” in 2019-2022; project no. 014/RID/2018/19. funding amount of 4 589 200.00 PLN. The authors would also like to thank Professor Józef Piotrowski from VIGO Photonics S.A. for the fruitful discussion.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5341679a-1f0c-4f02-b4c9-6887fac9b8fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.