Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Możliwości wykorzystania surowców poprodukcyjnych przemysłu owocowo-warzywnego w sektorze rolno-spożywczym: przegląd
Języki publikacji
Abstrakty
In recent years, there has been growing interest in the reuse of fruit and vegetable processing of by-products due to their valuable components. This paper presents both conventional and innovative extraction methods that enable the recovery of many desirable bioactive compounds. In addition to their potential application in enriching soil with minerals and supplementing animal feed with dietary fiber, these compounds can primarily be used to enhance traditional food products by imparting health-promoting properties. Overall, the utilization of by-products generated in the fruit and vegetable sector offers numerous economic, environmental, and social benefits for the agri-food industry. These practices are in line with the principles of sustainable development and efficient resource management.
W ostatnich latach wzrosło zainteresowanie ponownym wykorzystaniem produktów ubocznych przetwórstwa owoców i warzyw ze względu na ich cenne składniki. W niniejszym artykule przedstawiono zarówno konwencjonalne, jak i innowacyjne metody ekstrakcji, które umożliwiają odzyskiwanie wielu pożądanych związków bioaktywnych. Oprócz ich potencjalnego zastosowania w wzbogacaniu gleby o minerały i uzupełnianiu paszy dla zwierząt o błonnik pokarmowy, związki te mogą być przede wszystkim wykorzystywane do ulepszania tradycyjnych produktów spożywczych poprzez nadawanie im właściwości prozdrowotnych. Ogólnie rzecz biorąc, wykorzystanie produktów ubocznych wytwarzanych w sektorze owoców i warzyw oferuje liczne korzyści ekonomiczne, środowiskowe i społeczne dla przemysłu rolno-spożywczego. Praktyki te są zgodne z zasadami zrównoważonego rozwoju i efektywnego zarządzania zasobami.
Czasopismo
Rocznik
Tom
Strony
135--155
Opis fizyczny
Bibliogr. 81 poz., rys., tab.
Twórcy
autor
- Department of Biological Bases of Food and Feed Technology, University of Life Sciences in Lublin, 28 Głęboka St, 20-612 Lublin, Poland
autor
- Department of Biological Bases of Food and Feed Technology, University of Life Sciences in Lublin, 28 Głęboka St, 20-612 Lublin, Poland
- Department of Biological Bases of Food and Feed Technology, University of Life Sciences in Lublin, 28 Głęboka St, 20-612 Lublin, Poland
Bibliografia
- Agcam, E., Akyıldız, A., Kamat, S., & Balasubramaniam, V. M. (2021). Bioactive compounds extraction from the black carrot pomace with assistance of high pressure processing: An optimization study. Waste and Biomass Valorization, 12, 1-19. https://doi.org/10.1007/s12649-021-01431-z.
- Ahmad, T., Masoodi, F. A., Rather, S. A., Wani, S. M., & Gull, A. (2019). Supercritical fluid extraction: A review. Journal of Biological and Chemical Chronicles, 5(1), 114-122. http://dx.doi.org/ 10.33980/ jbcc.2019.v05i01.019.
- Alexandre, E. M., Araújo, P., Duarte, M. F., de Freitas, V., Pintado, M., & Saraiva, J. A. (2017). Experimental design, modeling, and optimization of high-pressure-assisted extraction of bioactive compounds from pomegranate peel. Food and Bioprocess Technology, 10, 886-900. http://dx.doi.org/10.1007/s11947-017-1867-6.
- Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive reviews in food science and food safety, 16(2), 295-315. https://doi.org/10.3390/molecules30061326.
- Bagade, S. B., & Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Critical Reviews in Analytical Chemistry, 51(2), 138-149. https://doi.org/10.1080/10408347.2019.1686966.
- Bakshi, M. P. S., Wadhwa, M., & Makkar, H. P. (2016). Waste to worth: vegetable wastes as animal feed. Centre for Agriculture and Bioscience International Reviews, 2016 1-26. https://doi.org/10.1079/PAVSNNR201611012.
- Baltacıoğlu, C., Baltacıoğlu, H., Okur, İ., Yetişen, M., & Alpas, H. (2024). Recovery of phenolic compounds from peach pomace using conventional solvent extraction and different emerging techniques. Journal of Food Science, 89(3), 1672-1683. https://doi.org/10.1111/1750-3841.16972.
- Bao, Y., Reddivari, L., & Huang, J. Y. (2020a). Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innovative Food Science & Emerging Technologies, 65, 102445. https://doi.org/10.1016/j.ifset.2020.102445.
- Bao, Y., Reddivari, L., & Huang, J. Y. (2020b). Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. Lebensmittel-Wissenschaft & Technologie, 133, 109970. https://doi.org/10.1016/j.lwt.2020.109970.
- Belwal, T., Chemat, F., Venskutonis, P. R., Cravotto, G., Jaiswal, D. K., Bhatt, I. D., ... & Luo, Z. (2020). Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends in Analytical Chemistry, 127, 115895. https://doi.org/10.1016/j.trac.2020.115895.
- Bhushan, S., Kalia, K., Sharma, M., Singh, B., & Ahuja, P.S. (2008).Processing of apple pomace for bioactive molecules. Critical Reviews in Biotechnology, 28, 285-296. https://doi.org/10.1080/ 07388550802368895.
- Bilea, F., Garcia-Vaquero, M., Magureanu, M., Mihaila, I., Mildažienė, V., Mozetič, M., ... & Žūkienė, R. (2024). Non-Thermal Plasma as Environmentally-Friendly Technology for Agriculture: A Review and Roadmap. Critical Reviews in Plant Sciences, 43(6), 428-486. https://doi.org/10.1080/07352689.2024.2410145.
- Bitwell, C., Indra, S. S., Luke, C., & Kakoma, M. K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19, e01585. https://doi.org/10.1016/j.sciaf.2023.e01585.
- Cao, X., Wang, C., Pei, H., & Sun, B. (2009). Separation and identification of polyphenols in apple pomace by high-speed counter-current chromatography and high-performance liquid chromatography coupled with mass spectrometry. Journal of Chromatography A, 1216(19), 4268-4274. https://doi.org/10.1016/j.chroma.2009.01.046.
- Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035.
- Cravotto, G., Binello, A., Merizzi, G., & Avogadro, M. (2004). Improving solvent‐free extraction of policosanol from rice bran by high‐intensity ultrasound treatment. European Journal of Lipid Science and Technology, 106(3), 147-151. https://doi.org/10.1002/ejlt.200300914.
- de Andrade Lima, M., Kestekoglou, I., Charalampopoulos, D., & Chatzifragkou, A. (2019). Supercritical fluid extraction of carotenoids from vegetable waste matrices. Molecules, 24(3), 466. https://doi.org/10.3390/molecules24030466.
- De Castro, M. L., & Priego-Capote, F. (2010). Soxhlet extraction: Past and present panacea. Journal of chromatography A, 1217(16), 2383-2389.
- de Corato, U., De Bari, I., Viola, E., and Pugliese, M. (2018). Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into highvalue added products associated to some emerging markets: a review. Renewable and Sustainable Energy Reviews, 88, 326-346. https://doi.org/10.1016/j.rser.2018.02.041.
- Fritsch, C., Staebler, A., Happel, A., Cubero Márquez, M. A., Aguiló-Aguayo, I., Abadias, M., ... & Belotti, G. (2017). Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A review. Sustainability, 9(8), 1492. https://doi.org/10.3390/ su9081492.
- Geow, C. H., Tan, M. C., Yeap, S. P., & Chin, N. L. (2021). A review on extraction techniques and its future applications in industry. European Journal of Lipid Science and Technology, 123(4), 2000302. https://doi.org/10.1002/ejlt.202000302.
- Ghaly, A.E.; Alkoaik, F.; Snow, A. (2006). Inactivation of Botrytis cinerea during thermophilic composting of greenhouse tomato plant residues. Biotechnology and Applied Biochemistry, 133, 59-75. https://doi.org/10.1385/abab:133:1:59.
- Gil-Sánchez, I., Cueva, C., Sanz-Buenhombre, M., Guadarrama, A., Moreno-Arribas, M. V., & Bartolomé, B. (2018). Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. Journal of Food Composition and Analysis, 68, 41-52. https://doi.org/10.1016/j.jfca.2017.05.005.
- Gowe, C. (2015). Review on potential use of fruit and vegetables by-products as a valuable source of natural food additives. Food Science and Quality Management, 45(1), 47-61.
- Grassino, A. N., Ostojić, J., Miletić, V., Djaković, S., Bosiljkov, T., Zorić, Z., ... & Brnčić, M. (2020). Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innovative Food Science and Emerging Technologies, 64, 102424. https://doi.org/10.1016/j.ifset.2020.102424.
- Gupta, K. K., & Routray, W. (2025). Cold plasma: A nonthermal pretreatment, extraction, and solvent activation technique for obtaining bioactive compounds from agro-food industrial biomass. Food Chemistry, 472, 142960. https://doi.org/10.1016/j.foodchem.2025.142960.
- Habeeb, A. A. M., Gad, A. E., El-Tarabany, A. A., Mustafa, M. M., & Atta, M. A. A. (2017). Using of sugar beet pulp by-product in farm animals feeding. International Journal of Scientific & Technology Research, 3, 107-120. https://doi.org/10.32628/IJSRST1733181.
- Heydari, M., Carbone, K., Gervasi, F., Parandi, E., Rouhi, M., Rostami, O., ... & Mohammadi, R. (2023). Cold plasma-assisted extraction of phytochemicals: a review. Foods, 12(17), 3181. https://doi.org/10.3390/foods12173181.
- Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules, 125, 621-629. https://doi.org/10.1016/j.ijbiomac.2018.12.096.
- Iftikhar, M., Wahab, S., ul Haq, N., Malik, S. N., Amber, S., Taran, N. U., & Rehman, S. U. (2019). 12. Utilization of citrus plant waste (peel) for the development of food product. Pure and Applied Biology (PAB), 8(3), 1991-1998. http://dx.doi.org/10.19045/bspab.2019.80143.
- Jalal, H., Giammarco, M., Lanzoni, L., Akram, M. Z., Mammi, L. M., Vignola, G., ... & Fusaro, I. (2023). Potential of fruits and vegetable by-products as an alternative feed source for sustainable ruminant nutrition and production: a review. Agriculture, 13(2), 286. https://doi.org/10.3390/agriculture13020286.
- Janiszewska, E., & Witrowa-Rajchert, D. (2005). Ekstrakcja nadkrytyczna w przemyśle spożywczym. Żywność Nauka Technologia Jakość, 12(4), 5-16.
- Jozwiak, D., Krasowska, M., Kowczyk-Sadowy, M., & Dolzynska, M. (2019). Ocena wybranych właściwości fizykochemicznych mieszanek paszowych z produktów ubocznych z przetwórstwa rolnospożywczego. Technika Rolnicza Ogrodnicza Leśna, 4, 21-23.
- Jun, X. (2013). High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Critical Reviews in Food Science and Nutrition, 53(8), 837-852. https://doi.org/10.1080/10408398.2011.561380.
- Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137, 1-11. https://doi.org/10.1016/j.cep.2019.01.006.
- Kakabouki, I., Efthimiadou, A., Folina, A., Zisi, C., & Karydogianni, S. (2020). Effect of different tomato pomace compost as organic fertilizer in sweet maize crop. Communications in Soil Science and Plant Analysis, 51(22), 2858-2872. https://doi.org/10.1080/00103624.2020.1853148.
- Kammerer, D. R., Kammerer, J., Valet, R., & Carle, R. (2014). Recovery of polyphenols from the byproducts of plant food processing and application as valuable food ingredients. Food Research International, 65, 2-12. https://doi.org/10.1016/j.foodres.2014.06.012.
- Kazemi, M., Khodaiyan, F., & Hosseini, S. S. (2019). Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. Lebensmittel-Wissenschaft & Technologie, 105, 182-189. https://doi.org/10.1016/j.lwt.2019.01.060.
- Khan, S. A., Aslam, R., & Makroo, H. A. (2019). High pressure extraction and its application in the extraction of bio‐active compounds: A review. Journal of Food Process Engineering, 42(1), e12896. https://doi.org/10.1111/jfpe.12896.
- Konrade, D., Klava, D., & Gramatina, I. (2017).Cereal crispbread improvement with dietary fibre from apple by-products. In CBU International Conference Proceedings, 5, 1143-1148. https://doi.org/10.12955/ cbup.v5.1085.
- Koubaa, M., Barba, F. J., Grimi, N., Mhemdi, H., Koubaa, W., Boussetta, N., & Vorobiev, E. (2016). Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innovative Food Science and Emerging Technologies, 37, 336-344. https://doi.org/10.1016/j.ifset.2016.04.015.
- Kruczek, M., Gumul, D., IvaniÅ, E., & GambuÅ, H. (2017). Industrial apple pomace by-products as a potential source of pro-health compounds in functional food. Journal of Microbiology, Biotechnology and Food Sciences, 7(1), 22-26. https://doi.org/10.15414/jmbfs.2017.7.1.22-26.
- Kuchtová, V., Karovičová, J., Kohajdová, Z., & Minarovičová, L. (2016). Chemical composition and functional properties of pumpkin pomace-incorporated crackers. Acta Chimica Slovaca, 9(1), 54-57. https://doi.org/10.1515/acs-2016-0009.
- Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325.
- Kwiatkowski, M., Terebun, P., Kučerová, K., Tarabová, B., Kovalová, Z., Lavrikova, A., ... & Pawłat, J. (2023). Evaluation of Selected Properties of Dielectric Barrier Discharge Plasma Jet. Materials, 16(3), 1167. https://doi.org/10.3390/ma16031167.
- López-Pérez, J. A., Roubtsova, T., & Ploeg, A. (2005). Effect of three plant residues and chicken ma nure used as biofumigants at three temperatures on Meloidogyne incognita infestation of tomato in greenhouse experiments. Journal of Nematology, 37(4), 489-494. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620994/.
- Lu,Y.,& Foo,L.Y.(2000).Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chemistry, 68, 81-85. https://doi.org/10.1016/S0308-8146(99)00167-3.
- Łusiak, P., Mazur, J., Sobczak, P., Zawiślak, K., & Panasiewicz, M. (2023). The use of carrot and apple pomace in the production of healthy snack bars. Agricultural Engineering, 27(1), 289-300. https://doi.org/10.2478/agriceng-2023-0021.
- Mahmoud, M. H., Abu-Salem, F. M., & Azab, D. E. S. H. (2022). A comparative study of pectin green extraction methods from apple waste: Characterization and functional properties. International Journal of Food Science, 2022(1), 2865921. https://doi.org/10.1155/2022/2865921.
- Mazurek, P. A., Pawłat, J., & Kwiatkowski, M. (2015). Badanie zaburzeń przewodzonych w torze zasilania reaktorów BDB i GlidArc. Przegląd Elektrotechniczny, 91(11), 50-53. https://doi.org/ 10.15199/ 48.2015.11.15.
- Mohsen, M. K., Ali, M. F., Gaafar, H. M., Al-Sakka, T. S., Aboelenin, S. M., Soliman, M. M., & Dawood, M. A. (2021). Impact of dry sugar beet pulp on milk production, digestibility traits, and blood constituents of dairy holstein cows. Animals, 11(12), 3496. https://doi.org/10.3390/ ani11123496.
- Naliyadhara, N., Kumar, A., Girisa, S., Daimary, U. D., Hegde, M., & Kunnumakkara, A. B. (2022). Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends in Food Science & Technology, 122, 238-255. https://doi.org/10.1016/j.tifs.2022.02.019.
- Niedziółka, I., & Zaklika, B. (2016). Assessment of physical properties of briquettes made of mixtures of selected plant raw materials and post-fermentation waste. Agricultural Engineering, 20(1), 101- 10. https://doi.org/10.1515/agriceng-2016-0010.
- Niedźwiedź, I., Waśko, A., Pawłat, J., & Polak-Berecka, M. (2019). The state of research on antimicrobial activity of cold plasma. Polish Journal of Microbiology, 68(2), 153-164. https://doi.org/ 10.33073/ pjm-2019-028.
- Nishad, J., Koley, T. K., Varghese, E., & Kaur, C. (2018). Synergistic effects of nutmeg and citrus peel extracts in imparting oxidative stability in meat balls. Food Research International, 106, 1026- 036. https://doi.org/10.1016/j.foodres.2018.01.075.
- Nour, A. H., Oluwaseun, A. R., Nour, A. H., Omer, M. S., & Ahmed, N. (2021). Microwave-assisted extraction of bioactive compounds. Microwave heating. Electromagnetic fields causing thermal and non-thermal effects. 1-31. https://doi.org/10.5772/INTECHOPEN.96092.
- Nowosad, K. (2022). Zastosowanie pulsacyjnego pola elektrycznego (PEF) jako zabegu wspomagającego ekstrację. Wiadomości Chemiczne, 76(3-4), 207-220.
- Nowosad, K., & Sujka, M. (2019). Niekonwencjonalne metody ekstrakcji: ekstrakcja ekologiczna. Wiadomości Chemiczne, 76(9-10), 465-479.
- Pagano, I., Campone, L., Celano, R., Piccinelli, A. L., & Rastrelli, L. (2021). Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. Journal of Chromatography A, 1651, 462295. https://doi.org/10.1016/j.chroma.2021.462295.
- Pataro, G., Carullo, D., & Ferrari, G. (2019). Effect of PEF pre-treatment and extraction temperature on the recovery of carotenoids from tomato wastes. Chemical Engineering Transactions, 75, 139-144. https://dx.doi.org/10.3303/CET1975024.
- Pellicanò, T. M., Sicari, V., Loizzo, M. R., Leporini, M., Falco, T., & Poiana, M. (2019). Optimizing the supercritical fluid extraction process of bioactive compounds from processed tomato skin byproducts. Food Science and Technology, 40, 692-697. https://doi.org/10.1590/fst.16619.
- Plawgo, M., Kocira, S., & Bohata, A. (2024). Multi-objective optimization of the green extraction conditions of bio-active compounds from a Levisticum officinale WDJ Koch: Pareto optimality and compromise solutions for process management. Agricultural Engineering, 28(1), 137-165. https://doi.org/10.2478/agriceng-2024-0010.
- Ranjha, M. M. A., Kanwal, R., Shafique, B., Arshad, R. N., Irfan, S., Kieliszek, M., ... & Aadil, R. M. (2021). A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules, 26(16), 4893. https://doi.org/10.3390/molecules26164893.
- Rasul, M. G. (2018). Conventional extraction methods use in medicinal plants, their advantages and disadvantages. Int. J. Basic Sci. Appl. Comput, 2(6), 10-14. https://doi.org/10.35940/ijbsac.F0082. 0612.
- Sacramento, J. C., & Heggs, P. J. (2009). The role of flooding in the design of vent and reflux condensers. Applied thermal engineering, 29(7), 1338-1345. https://doi.org/10.1016/j.applthermaleng.2008.04.013.
- Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531. https://doi.org/10.1111/1541-4337.12330.
- Sasidharan, S., Shanmugapriya, Jothy, S. L., Vijayarathna, S., Kavitha, N., Oon, C. E., ... & Kanwar, J. R. (2018). Conventional and non-conventional approach towards the extraction of bioorganic phase. Bioorganic Phase in Natural Food: An Overview, 41-57. https://doi.org/10.1007/978-3-319-74210-6_4.
- Shouqin, Z., Junjie, Z., & Changzhen, W. (2004). Novel high pressure extraction technology. International journal of Pharmaceutics, 278(2), 471-474. https://doi.org/10.1016/j.ijpharm.2004.02.029.
- Shrivastav, G., Prava Jyoti, T., Chandel, S., & Singh, R. (2024). Eco-friendly extraction: innovations, principles, and comparison with traditional methods. Separation & Purification Reviews, 1-17. https://doi.org/10.1080/15422119.2024.2381605.
- Sobczak, P., Zawiślak, K., Starek, A., Żukiewicz-Sobczak, W., Sagan, A., Zdybel, B., & Andrejko, D. (2020). Compaction process as a concept of press-cake production from organic waste. Sustainability, 12(4), 1567. https://doi.org/10.3390/su12041567.
- Spinei, M., & Oroian, M. (2022). Microwave-assisted extraction of pectin from grape pomace. Scientific Reports, 12(1), 12722. https://doi.org/10.1038/s41598-022-16858-0.
- Starek A. (2019). Skuteczność innowacyjnych technik obróbki soków warzywnych. Polskie Towarzystwo Inżynierii Rolniczej. Kraków, 978-83-64377-30-3.
- Tsao, R., Yang, R., Young, J. C., & Zhu, H. (2003). Polyphenolic profiles in eight apple culti vars using high-performance liquid chromatography (HPLC). Journal of Agricultural and Food Chemistry, 51, 6347-6353. https://doi.org/10.1021/jf0346298.
- Umair, M., Jabbar, S., Ayub, Z., Muhammad Aadil, R., Abid, M., Zhang, J., & Liqing, Z. (2022). Recent advances in plasma technology: Influence of atmospheric cold plasma on spore inactivation. Food Reviews International, 38(sup1), 789-811. https://doi.org/10.1080/87559129.2021.1888972.
- Vicenssuto, G. M., & de Castro, R. J. S. (2020). Development of a novel probiotic milk product with enhanced antioxidant properties using mango peel as a fermentation substrate. Biocatalysis and Agricultural Biotechnology, 24, 101564. https://doi.org/10.1016/j.bcab.2020.101564.
- Wani, F. A., Rashid, R., Jabeen, A., Brochier, B., Yadav, S., Aijaz, T., ... & Dar, B. N. (2021). Valorisation of food wastes to produce natural pigments using non‐thermal novel extraction methods: a review. International Journal of Food Science & Technology, 56(10), 4823-4833. https://doi.org/10.1111/ijfs.15267.
- Waraczewski, R., Muszyński, S., & Sołowiej, B. G. (2022). An analysis of the plant-and animal-based hydrocolloids as byproducts of the food industry. Molecules, 27(24), 8686. https://doi.org/ 10.3390/molecules27248686.
- Xi, J., Wang, Y., Zhou, X., Wei, S., & Zhang, D. (2024). Cold plasma pretreatment technology for enhancing the extraction of bioactive ingredients from plant materials: A review. Industrial Crops and Products, 209, 117963. https://doi.org/10.1016/j.indcrop.2023.117963.
- Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., and Brown, P. H. (2016). Biostimulants in plant science: a global perspective. Frontiers in Plant Science, 7, 2049. 10.3389/fpls.2016.02049. https://doi.org/10.3389/fpls.2016.02049.
- Zhang, M., Zeng, G., Pan, Y., & Qi, N. (2018a). Difference research of pectins extracted from tobacco waste by heat reflux extraction and microwave-assisted extraction. Biocatalysis and agricultural biotechnology, 15, 359-363. https://doi.org/10.1016/j.bcab.2018.06.022.
- Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018b). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 1-26. https://doi.org/10.1186/s13020- 018-0177-x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-533e261c-a9fb-4a92-8af7-5c48f0e3affe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.