PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of shell shape on flow and acoustic parameters of a steam silencer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steam discharge produces noise due to rapid expansion and a temperature drop of ejected steam. This is why steam silencers are used to change one-stage into multi-stage expansion, which reduces the intensity of pressure and temperature drop during this process and shifts emitted noise into higher frequencies, which are easier to dampen. This paper presents a flow-acoustic numerical model of a steam silencer. It is meant to help to obtain a precise analysis of phenomena occurring in steam silencers and improve the process of designing this type of device. The model described in this paper was based on the parameters of a real working unit manufactured in the Institute of Power Engineering – Thermal Technology Branch. Most of the steam silencers are designed based on construction guidelines that have not been changed for a long time. This restrained an increase in the acoustics efficiency of the steam silencers. An improvement of their flow and acoustic properties allows for the development of smaller, more efficient, and lighter construction. The current version of the model was used for the analysis of flow and acoustic changes which occur after modifying the lower region of a shell of the steam silencer. The proposed modification allowed for a 19% increase in mass flow rate through the silencer and noise reduction in the low-frequency range.
Słowa kluczowe
Rocznik
Strony
141--154
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
  • Institute of Power Engineering, Mory 8, 01-330 Warsaw, Poland
  • Lodz University of Technology, Wólczańska 219, 90-924 Lodz, Poland
  • Lodz University of Technology, Piotrkowska 266, 90-924 Lodz, Poland
  • Institute of Power Engineering, Mory 8, 01-330 Warsaw, Poland
Bibliografia
  • [1] Karczewski J., Kopania J., Bogusławski G.: Reduction of noise from industrial installations, i.e. steam blow-off silencers. Energetyka Cieplna i Zawodowa 712(2018), 14–19 (in Polish).
  • [2] Vincent P., Larsonnier F., Rodrigues D., Durand S.: Analytical modeling and characterization of an infrasound generator in the air. Appl. Acoust. 148(2019), 476–483.
  • [3] Nowicki G., Nowicki T.J., Prystup A., Slusarska B., Chemperek E.: Effects of infrasound generated in urban areas on health of people and animals – an attempt to localize environmental infrasound sources using computer simulations. J. Pre-Clin. Clin. Res. 8(2014), 2, 81–85.
  • [4] Sorokin L.I.: Calculation and Measurements of the Characteristics of Noise Created in a Far Noise Field by Jet Planes. Mashinostroenie, Moscow 1968 (in Russian).
  • [5] Klyuevl V.V.: Handbook on the Control of Industrial Noises. Mashinostroenie, Moscow 1979 (in Russian).
  • [6] Dragun D.K., Perfil’ev Yu.P., Liukevich N.V., Khotulev V.A.: Shaft-Type Launchers. Bauman MGTU, Moscow 2003 .
  • [7] Lukashchuk V.N.: Noise generated during operations for purging steam superheaters and development of measures to reduce its influence on the environment. PhD thesis, Moscow 1988.
  • [8] Hockle M., Muller H.A.: A Handbook on Technical Acoustics. Sudostroenie, Leningrad 1980 (in Russian).
  • [9] Kurlze G.: Physik und Technik der Lermbergdampfung. G. Brann Buchverlag, Karlsruhe 1963 (in German).
  • [10] Middelberg J.M., Barber T.J., Leong S.S., Byrne K.P., Leonardi E.: Computational fluid dynamics analysis of the acoustic performance of various simple expansion chamber mufflers. In: Proc. Acoustics 2004, Gold Coast, 3-5 Now. 2004.
  • [11] Hu X., Zhou Y., Fang J., Man X., Zhao Z.: Computational fluid dynamics research on pressure loss of cross-flow perforated muffler. Chin. J. Mech. Eng. 20(2007), 2, 88–93 (English Edn.).
  • [12] Tupov V.B., Taratorin A.A.: The choice of turbulence models for steam jet. Procedia Engineer. Dynamic and Vibroacoustics of Machines (DVM2016) 176(2017), 199–206.
  • [13] Taratorin A.A., Tupov V.B.: Detection techniques of acoustical centre of noise source, Therm. Eng. 62(2015), 7, 480–483.
  • [14] Journal of Laws of the Republic of Poland (Dziennik Ustaw Rzeczypospolitej Polskiej), Item 2288, Attachment 7, 21/11/2019.
  • [15] Mohanty A.R, Pattnaik S.P.: An Optimal Design Methodology for a Family of Perforated Mufflers. SAE Tech. Pap. 2005-26-053, 2005.
  • [16] Zheng S., Kamg Z.X., Lian X.M.: Acoustic Matching Simulation of Muffler with Hybrid Approach. SAE Tech. Pap. 2011-01-1516, 2011.
  • [17] Comsol Multiphysics 5.6 Release Highlights. https://www.comsol.com/release/5.6 (acessed 24 March 2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5339897d-9606-44b4-b4a5-97c4c0f1dcb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.