Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The composition of microbial contaminants of soil samples polluted with oil and oil products from oil depots of ports in southern Ukraine was investigated, and the possibility of their bioremediation by microorganisms present in the soil was determined. The microbiological landscape of the soil contaminated with oil and oil products was established, the quantitative and qualitative characteristics, group and dendrological composition of microorganisms as well as their potential ability to biodegrade petroleum hydrocarbons were determined. The degree of sanitary and ecological contamination of the samples was characterized by the number of the main groups of microorganisms – mesophilic aerobic and facultative anaerobic microorganisms (MAFAnM), molds, yeasts, as well as the dominance of MAFAnM by 3-5 orders among the studied groups of microorganisms. According to MAFANM, the number of thermophilic bacteria, titers of nitrifying bacteria, E. coli, Clostridium perfringens, bacteria of the genus Proteus, and the degree of oil contamination, the soil samples studied are characterized as contaminated and heavily contaminated. According to the study of morphological, tintorial, cultural, biochemical properties, 130 species were identified and 9 morphogroups of bacteria in oil-contaminated soil samples were determined. A dendrogram was constructed based on the set of studied properties of the isolated microorganisms. According to the results of the screening, the microorganisms isolated from the contaminated soil samples are capable of biodegradation of long-chain alkanes of petroleum hydrocarbons. The identified groups of microorganisms can be arranged in the following order of increasing indicator: Bacillus subtilis and Paenibacillus macerans ˂ Paenibacillus polymyxa ˂ Bacillus licheniformis ˂ Bacillus thuringiensis ˂ Bacillus megaterium ˂ Bacillus pumilis ˂ Bacillus cereus ˂ Paenibacillus circulans. Paenibacillus circulans and Bacillus cereus were identified as the most promising strains, biotransforming up to 48 percent of the total amount of hydrocarbons.
Wydawca
Rocznik
Tom
Strony
31--40
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Odesa National University of Technology, 112 Kanatna Str., Odessa, 65039, Ukraine
autor
- Odesa National University of Technology, 112 Kanatna Str., Odessa, 65039, Ukraine
autor
- Odesa National University of Technology, 112 Kanatna Str., Odessa, 65039, Ukraine
autor
- Odesa National University of Technology, 112 Kanatna Str., Odessa, 65039, Ukraine
autor
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciencesund Arts Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
autor
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciencesund Arts Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
autor
- Odesa National University of Technology, 112 Kanatna Str,, Odessa, 65039, Ukraine
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciencesund Arts Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
autor
- National University "Lviv Polytechnic", 12 Stepan Bandera Str., Lviv, 79000, Ukraine
Bibliografia
- 1. Abatenh, E., Gizaw, B., Tsegaye, Z., Wassie, M. 2017. Application of microorganisms in bioremediation – review. J. Environ. Microbiol., 1(1), 2–9. Application of microorganisms in bioremediation-review (pulsus.com)
- 2. Abdulsalam, S., Bugaje, I., Adefila, S., Ibrahim, S. 2011. Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. Int. J. Environ. Sci. Technol. 8, 187–194.
- 3. Abousnina, R.M., Manalo, A., Shiau, J., Lokuge, W. 2016. An overview of oil contaminated sand and its engineering applications. Int. J. GEOMATE 10 (1), 1615–1622.
- 4. Adams, G.O., Fufeyin, P.T., Okoro, S.E., Ehinomen, I. 2015. Bioremediation, biostimulation and bioaugmention: A review. Int. J. Environ. Bioremediat. Biodegrad. 3(1), 28–39. DOI: 10.12691/ijebb-3-1-5
- 5. Agarry, S., Latinwo, G.K. 2015. Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulating-bioaugmentation agents. J. Ecol. Eng., 16(2), 82–91. doi: 10.12911/22998993/1861
- 6. Al-Zubaidi, I., Al-Tamimi, A. 2018. Soil remediation from lubricating oil. Environ. Technol. Innov. 9, 151–159. doi: 10.1016/j.eti.2017.11.004
- 7. Bergey`s Manual of systematic bacteriology. 2005. The proteobacteric. Part A, Bergey`s Manual Trust Department of Microbiology and Molecular Genetics Michigan State University, 2. 1 (springer.com)
- 8. Chaillan, F., Flèchi, A.L., Bury, E., Phantavong, Y., Grimont, P., Saliot, A., Oudot, J. 2004. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res. Microbiol., 155, 587–595. doi: 10.1016/j.resmic.2004.04.006
- 9. Connor N., Sikorski J., Rooney P. et al. 2010. Ecology of speciation of the genus Bacillus, Appl. Environ. Microbiol., 76, 1349–1358. doi: 10.1128/AEM.01988-09
- 10. Das, N., Chandran, P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Sage-Hindawi Biotechnol. Res. Int., 13, 941810. https://doi.org/10.4061/2011/941810
- 11. Doyle, M.E. 2006. Food spoilage microorganisms – losses and control strategies. Food Research Institute, University of Wisconsin–Madison Madison, WI 53706. Microsoft Word - Brief_Spoilage_7_07.doc (wisc.edu)
- 12. Dzhej, Dzh. M., Lessner, M. Dzh., Gol’den, D.A. 2005. Modern food microbiology, 7 edition, Springer, 886. https://doi.org/10.1007/BF03174975
- 13. Ehiosun, K., Godin, S., Urios, L., Lobinski, R., Grimaud R. 2022. Degradation of longchain alkanes through biofilm formation by bacteria isolated from oil-polluted soil. International Biodeterioration & Biodegradation, 175, 105508. https://doi.org/10.1016/j.ibiod.2022.105508
- 14. Harley, J.P., Prescott, L.M. 2002. Laboratory Exercises in Microbiology, The McGraw Hill Companies, N.Y., p. 466. laboratory-exercises-in-microbiology-book.pdf (wordpress.com)
- 15. Head, J., Jones M., Larter, S. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426, 344–352. doi: 10.1038/nature02134
- 16.Jang, K., Cho, S., Seok, S., Kong, W., Kim, G., Sung, J. 2009. Screening of biodegradable function of indigenous lingo-degrading mushroom using dyes. Mycobiology, 4, 53–61. doi: 10.4489/MYCO.2009.37.1.053
- 17. Margesin, R., Labbe, D., Schinner, F., Greer, C., Whyte, L. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69 (6), 3085–3092. doi: 10.1128/AEM.69.6.3085-3092.2003
- 18. Mishra, S., Jyoti, J., Kuhad, R.C., Lal, B. 2001. In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr. Microbiol., 43, 328–335. doi: 10.1007/s002840010311
- 19. Persianova, I.P. 2010. Microbiology of canning and microbiological control of canning production - Odessa: Izd. “Vneshreklamservis”. https://www.studmed.ru/persianova-i-p-gerasimenko-l-nstoyanova-l-a-mikrobiologiya-konservirovaniyapischevyh-produktov_431bd04f3fb.html
- 20. Prykhodko, M. 2015. Remediation of lands contaminated with oil and oil products. Constructive geography and geoecology. Scientific notes., 1, 176-180. http://geography.tnpu.edu.ua/wp-content/uploads/2016/11/291.pdf.
- 21. Public Health England. 2015. Identification of Bacillus species, UK Standards for Microbiology Investigations, 9(3). www.gov.uk/uk-standards-formicrobiology-investigations-smi-quality-andconsistency-in-clinical-laboratories
- 22. Ron, E., Rosenberg, E. 2014. Enhanced bioremediation of oil spills in the sea. Curr. Opin. Biotechnol. 27, 191–194. doi: 10.1016/j.copbio.2014.02.004
- 23. Sharma, S. 2012. Bioremediation: features, strategies and applications. Asian J. Pharmacy Life Sci., 2(2), 202–213. Microsoft Word - shilpi_et_al after correction (psu.edu)
- 24. Varjani, S.J. 2017. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol., 223, 277–286. doi: 10.1016/j.biortech.2016.10.037
- 25. Varjani, S., Rana, D., Jain, A., Bateja, S., Upasani, V. 2015. Synergistic ex situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int. Biodeterior. Biodegrad., 103, 116–124. https://doi.org/10.1016/j.ibiod.2015.03.030
- 26. Varjani, S., Upasani, V. 2017. A new look on factor affecting microbial degradation of petroleum hydrocarbon pollutants. Int. Biodeterior. Biodegrad., 120, 71–83 https://doi.org/10.1016/j.ibiod.2017.02.006
- 27. Verma, S., Bhargava, R., Pruthi, V. 2006. Oily sludge degradation by bacteria from Ankleshwar, India. Int. Bioder. Biodegr., 57, 207–213. doi: 10.1016/j.ibiod.2006.02.004
- 28. Yadav, K.K., Singh, J.K., Gupta, N., Kumar, V. 2017. A review of nanobioremediation technologies for environmental cleanups: A novel biological approach. J. Mater. Environ. Sci., 8(2), 740–757. 78-JMES-2831-Yadav.pdf (jmaterenvironsci.com)
- 29. Yang, Y., Javed, H., Zhang, D., Li, D., Kamath, R., McVey, K., Sra, K., Alvarez, P. 2017. Merits and limitation of TiO2 based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation. Front. Chem. Sci. Eng., 11(3), 387–394.
- 30. Yang, C., Kublik, A., Weidauer, C., Seiwert, B., Adrian, L. 2015. Reductive dehalogenation of oligocyclic phenolic bromoaromatics by Dehalococcoides mccartyi strain CBDB1. Environ. Sci. Technol., 49(14), 8497–8505. https://doi.org/10.1021/acs.est.5b01401
- 31. Yeung, A. 2010. Remediation technologies for contaminated sites, in: Chen, Y., Zhan, L., Tang, X. (Eds.), Advances in Environmental Geotechnics. Zhejiang University Press, Hangzhou, 328–369. doi: 10.1007/978-3-642-04460-1_25
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5335c4d9-a62d-4daf-aa8d-50fbc64268ba