PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power management for a fuel cell/battery and supercapacitor based on artificial neural networks for electric vehicles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zarządzanie energią dla ogniwa paliwowego/akumulatora i superkondensatora w oparciu o sztuczne sieci neuronowe dla pojazdów elektrycznych
Języki publikacji
EN
Abstrakty
EN
Hydrogen electric vehicles are environmentally friendly and highly efficient. They derive their energy from fuel cell as a main component in addition to lithium-ion battery and supercapacitor as auxiliary elements. However, there are problems in securing the required power and the optimal power control strategy with different operating conditions. In order to solve these problems, we seek in our work to improve energy economy and continuity, make use of some of the energy that is often lost as heat, and increase system life. To with considering various operating restrictions. So, we adopted this hybrid energy storage system. A specialized strategy is designed for optimal control of energy sources. Therefore, an artificial neural network was trained using Matlab/Simulink software. The obtained results showed the effectiveness and accuracy of the proposed system. Which can be used in practice.
PL
Pojazdy napędzane wodorem są przyjazne dla środowiska i bardzo wydajne. Energię czerpią z ogniwa paliwowego jako głównego elementu, oprócz akumulatora litowo-jonowego i superkondensatora jako elementów pomocniczych. Istnieją jednak problemy z zapewnieniem wymaganej mocy i optymalną strategią sterowania mocą przy różnych warunkach pracy. Aby rozwiązać te problemy, w naszej pracy staramy się poprawić ekonomię i ciągłość energii, wykorzystać część energii, która często jest tracona w postaci ciepła, oraz wydłużyć żywotność systemu. Aby wziąć pod uwagę różne ograniczenia operacyjne. Dlatego przyjęliśmy ten hybrydowy system magazynowania energii. Specjalistyczna strategia ma na celu optymalne sterowanie źródłami energii. Dlatego sztuczna sieć neuronowa została przeszkolona przy użyciu oprogramowania Matlab/Simulink. Uzyskane wyniki wykazały skuteczność i dokładność proponowanego systemu. Które można wykorzystać w praktyce.
Rocznik
Strony
165--169
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Applied automation and diagnostic industrial laboratory (LAADI), Ziane Achour University of djelfa, Algeria
autor
  • Laboratory of L2GEGI, Department of Electrical Engineering, University of Tiaret, Algeria
  • Applied automation and diagnostic industrial laboratory (LAADI), Ziane Achour University of djelfa, Algeria
  • Laboratory of L2GEGI, Department of Electrical Engineering, University of Tiaret, Algeria
  • Dipartimento di Ingegneria Elettrica e de ll'Informazione Università degli Studi di Cassino, Cassino, 03043, Italy
Bibliografia
  • [1] P. A. Owusu and S. Asumadu-Sarkodie, “A review of renewable energy sources, sustainability issues and climate change mitigation,” Cogent Engineering, vol. 3, no. 1, Apr. 2016, doi: 10.1080/23311916.2016.1167990.
  • [2] A. Z. Amin, “How renewable energy can be cost-competitive,” UN Chronicle, vol. 52, no. 3, pp. 8–11, Apr. 2013, doi: 10.18356/d10f9c26-en.
  • [3] P. NOUMBA UM, A. SARKAR, and D. EFFAH, “Electric mobility is a game-changer for MENA’s energy and transport sectors,” blogs.worldbank.org, Oct. 01, 2020. https://blogs.worldbank.org/arabvoices/electric-mobility-game-changer-menas-energy-and-transport-sectors.
  • [4] “Energy Consumption in the Transport Sector,” ESCWA, Aug. 20, 2015. https://www.unescwa.org/news/energy-consumption-transport-sector.
  • [5] K. Nice and J. Strickland, “How Fuel Cells Work,” HowStuffWorks, Sep. 18, 2000. https://auto.howstuffworks.com/fuel-efficiency/alternative-fuels/fuel-cell.htm#pt2.
  • [6] F. Markus, “1966 GM Electrovan Fuel Cell Prototype Turns 50,” MotorTrend, Nov. 01, 2016. https://www.motortrend.com/news/1966-gm-electrovan-fuel-cell-prototype-turns-50/.
  • [7] “Hyundai ix35 Fuel Cell,” HYUNDAI MOTORS. https://www.hyundai.com/worldwide/en/company/newsroom/hy undai-ix35-fuel-cell-0000001596.
  • [8] “A List of the 11 Hydrogen-Powered Cars Currently In Development,” Despatch, Dec. 08, 2016. https://www.despatch.com/blog/list-11-hydrogen-powered-cars-currently-development.
  • [9] “2022 Toyota Mirai Fuel Cell Vehicle | Innovation is Power,” www.toyota.com. https://www.toyota.com/mirai/2022.
  • [10] “NEXO,” Hyundai. https://www.hyundai.com/fr/modeles/nexo.html.
  • [11] “Audi h-tron quattro,” audi.com. https://www.audi.com/en/innovation/concept-cars/audi-h-tron-quattro.html.
  • [12] M.-B. Group, “Mercedes-Benz GLC F-Cell model series X 253,” Mercedes-Benz Group. https://group.mercedes-benz.com/sustainability/environmental-certificates/glc-f-cell.html (accessed Jan. 09, 2023).
  • [13] “Nikola Two: Fuel-Cell Electric Sleeper Semi-Truck,” Nikola Motor Company. https://nikolamotor.com/two-fcev.
  • [14] P. Paolo Pininfarina, “H2 SPEED - Pininfarina,” Pininfarina, 2016. https://pininfarina.it/en/work/h2-speed/ (accessed Jan. 09, 2023).
  • [15] D. Xu, Q. Liu, W. Yan, and W. Yang, “Adaptive Terminal Sliding Mode Control for Hybrid Energy Storage Systems of Fuel Cell, Battery and Supercapacitor,” IEEE Access, vol. 7, pp. 29295–29303, 2019, doi: 10.1109/access.2019.2897015.
  • [16] S. Njoya Motapon, Louis-A. Dessaint, and K. Al-Haddad, “A Comparative Study of Energy Management Schemes for a Fuel-Cell Hybrid Emergency Power System of More-Electric Aircraft,” IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1320–1334, Mar. 2014, doi: 10.1109/tie.2013.2257152.
  • [17] S. Bouradi, K. Negadi, R. Araria, and F. Marignetti, “Z-Source Inverter for Energy Management and Vector Control for Electric Vehicle Based PMSM,” Journal Européen des Systèmes Automatisés, vol. 53, no. 6, pp. 883–892, Dec. 2020, doi: 10.18280/jesa.530614.
  • [18] A. Badji, D. O. Abdeslam, M. Becherif, F. Eltoumi, and N. Benamrouche, “Analyze and evaluate of energy management system for fuel cell electric vehicle based on frequency splitting,” Mathematics and Computers in Simulation, vol. 167, pp. 65–77, Jan. 2020, doi: 10.1016/j.matcom.2019.02.014.
  • [19] A. M. Nassef, A. Fathy, and H. Rezk, “An Effective Energy Management Strategy Based on Mine-Blast Optimization Technique Applied to Hybrid PEMFC/Supercapacitor/Batteries System,” Energies, vol. 12, no. 19, p. 3796, Oct. 2019, doi: 10.3390/en12193796.
  • [20] F. Odeim, J. Roes, and A. Heinzel, “Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System,” Energies, vol. 8, no. 7, pp. 6302–6327, Jun. 2015, doi: 10.3390/en8076302.
  • [21] Y. Cheng, Y. Zhang, and Q. Chen, “Energy Management Strategy of Fuel-Cell Backup Power Supply Systems Based on Whale Optimization Fuzzy Control,” Electronics, vol. 11, no. 15, p. 2325, Jul. 2022, doi: 10.3390/electronics11152325.
  • [22] J. Granger, “H2O - The Mystery, Art, and Science of Water: The Chemistry of Water: Electrolysis,” Sbc.edu, 2020. http://witcombe.sbc.edu/water/chemistryelectrolysis.html.
  • [23] R. Seyezhai and B. L. Mathur, “Modeling and control of a PEM fuel cell based hybrid multilevel inverter,” International Journal of Hydrogen Energy, vol. 36, no. 22, pp. 15029–15043, Nov. 2011, doi: 10.1016/j.ijhydene.2011.04.019.
  • [24] B. N, H. A.e, D. A, and K. L, “Modeling and validation of fuel cell PEMFC,” Revue des Energies Renouvelables, pp. 365– 377, Jun. 2013.
  • [25] F. Saidani, F. X. Hutter, R.-G. Scurtu, W. Braunwarth, and J. N. Burghartz, “Lithium-ion battery models: a comparative study and a model-based powerline communication,” Advances in Radio Science, vol. 15, pp. 83–91, Sep. 2017, doi: 10.5194/ars-15-83-2017.
  • [26] H. Dai, X. Zhang, X. Wei, Z. Sun, J. Wang, and F. Hu, “Cell-BMS validation with a hardware-in-the-loop simulation of lithium-ion battery cells for electric vehicles,” International Journal of Electrical Power & Energy Systems, vol. 52, pp. 174–184, Nov. 2013, doi: 10.1016/j.ijepes.2013.03.037.
  • [27] A. Singh, N. A. Azeez, and S. S. Williamson, “Dynamic modeling and characterization of ultracapacitors for electric transportation,” 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), pp. 275–280, Jun. 2015, doi: 10.1109/isie.2015.7281481.
  • [28] T. C. Do et al., “Energy Management Strategy of a PEM Fuel Cell Excavator with a Supercapacitor/Battery Hybrid Power Source,” Energies, vol. 12, no. 22, p. 4362, Nov. 2019, doi: 10.3390/en12224362.
  • [29] M. Uzunoglu and M. S. Alam, “Dynamic modeling, design and simulation of a PEM fuel cell/ultra-capacitor hybrid system for vehicular applications,” Energy Conversion and Management, vol. 48, no. 5, pp. 1544–1553, May 2007, doi: 10.1016/j.enconman.2006.11.014.
  • [30] S. Satpathy, S. Debbarma, and B. Kumar Bhattacharyya, “An integration of the review of electrode’s materials and a new gamma function-based charging methodology of supercapacitor for high current applications,” Materials Today: Proceedings, vol. 26, pp. 2151–2156, 2020, doi: 10.1016/j.matpr.2020.02.463.
  • [31] D. Younes, N. Karim, and B. mohamed, “Energy management based hybrid fuel cell/battery for electric vehicle using type 2 fuzzy logic controller,” International Journal of advanced studies in Computer Science and Engineering, vol. 12, no. 01, pp. 18–33, Jan. 2023, Accessed: Feb. 10, 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5335597a-9d16-4d9c-a7b9-f0ec4bacc144
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.