Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the kinematic analysis of the H20 humanoid mobile robot. The kinematic analysis for the robot arms is essential to achieve accurate grasping and placing tasks for object transportation. The H20 robot has dual arms with 6 revolute joints with 6-DOF. For each arm, the forward kinematics is derived and the closed-form solution for the inverse kinematic problem with different cases of singularities is found. A reverse decoupling mechanism method is used to solve the inverse kinematic problem analytically by viewing the arm kinematic chain in reverse order. The kinematics solution is validated using MATLAB with robotics toolbox. A decision method is used to determine the optimal solution within multiple solutions of inverse kinematic depending on the joints’ limits and minimum joints motion. The workspace analysis of the arm is found and simulated. Finally, a verification process was performed on the real H20 arms by applying blind and vision based labware manipulation strategies to achieve the transportation tasks in real life science laboratories.
Rocznik
Tom
Strony
40--52
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Center for Life Science Automation (CELISCA), University of Rostock, Rostock 18119, Germany
autor
- Center for Life Science Automation (CELISCA), University of Rostock, Rostock 18119, Germany
autor
- Center for Life Science Automation (CELISCA), University of Rostock, Rostock 18119, Germany
autor
- Center for Life Science Automation (CELISCA), University of Rostock, Rostock 18119, Germany
Bibliografia
- [1] Chung H., Hou C., Chen Y., Chao C., “An intelligent service robot for transporting object”. In: IEEE International Symposium on Industrial Electronics (ISIE), Taipei, Taiwan, 2013, 1–6.
- [2] Ciocarlie M., Hsiao K., Jones E. G., Chitta S., Rusu R. B., Şucan I. A., “Towards reliable grasping and manipulation in household environments”. In: 12th International Symposium on Experimental Robotics (ISER), Springer Berlin Heidelberg, 2014, 241–252. DOI: 10.1007/978-3-642-28572-1_17.
- [3] Graf B., Reiser U., Hägele M., Mauz K., Klein P., “Robotic home assistant Care-O-bot® 3-product vision and innovation platform”. In: IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), Tokyo, Japan, 2009, 139–144.
- [4] Vahrenkamp N., Berenson D., Asfour T., Kuffner J., Dillmann R., “Humanoid motion planning for dual-arm manipulation and re-grasping tasks”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, USA, 2009, 2464–2470. DOI: 10.1109/IROS.2009.5354625.
- [5] O’Flaherty R., Vieira P., Grey M. X., Oh P., Bobick A., Egerstedt M., Stilman M., “Humanoid robot teleoperation for tasks with power tools”. In: IEEE International Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, 2013, 1–6. DOI: 10.1109/Te-PRA.2013.6556362.
- [6] Tsay T. J., Hsu M. S., Lin R. X., “Development of a mobile robot for visually guided handling of materia”. In: IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan, 2003, 3397–3402.
- [7] Liu H., Toll N. S, Junginger S., Thurow K., “A common wireless remote control system for mobile robots in laboratory”. In: IEEE Conference on Instrumentation and Measurement Technology (I2MTC), Graz, Austria, 2012, 688–693.
- [8] Liu H., Stoll N., Junginger S., Thurow K., “Mobile Robot for Life Science Automation,” International Journal of Advanced Robotic Systems, vol. 10, 2013, 1–14. DOI: 10.5772/56670.
- [9] Abdulla A. A., Liu H., Stoll N., Thurow K., “A New Robust Method for Mobile Robot Multifloor Navigation in Distributed Life Science Laboratories,” J. Control Sci. Eng., vol. 2016, Jul. 2016, 1–17. DOI: 10.1155/2016/3589395.
- [10] Iqbal J., ul Islam R., Khan H., “Modeling and Analysis of a 6 DOF Robotic Arm Manipulator”, Canadian Journal on Electrical and Electronics Engineering, vol. 3, 2012, 300–306.
- [11] Tevatia G., Schaal S., “Inverse kinematics for humanoid robots”. In: IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, 2000, 294–299. DOI: 10.1109/ROBOT.2000.844073.
- [12] Mistry M., Nakanishi J., Cheng G., Schaal S., “Inverse kinematics with floating base and constraints for full body humanoid robot control”. In: IEEE-RAS International Conference on Humano Robots, Daejeon, Korea, 2008, 22–27. DOI: 10.1109/ICHR.2008.4755926.
- [13] Nie L., Huang Q., “Inverse kinematics for 6-DOF manipulator by the method of sequential retrieval”. In: Proceedings of the International Conference on Mechanical Engineering and Material Science, China, 2012, 255–258.
- [14] Pieper D. L., The kinematics of manipulators under computer control, Ph.D. Dissertation, Stanford University, 1968.
- [15] Lee C. G. S., Ziegler M., “Geometric approach in solving inverse kinematics of PUMA robots,” IEEE Transactions on Aerospace and Electronic Systems, vol. 20, 1984, 695–706. DOI: 10.1109/TAES.1984.310452.
- [16] Ho T., Kang, C.-G., Lee S., “Efficient closed-form solution of inverse kinematics for a specific six-DOF arm”, International Journal of Control Systems and Automation, vol. 10, no. 3, 2012, 567–573. DOI: 10.1007/s12555-012-0313-9.
- [17] Huang G.-S., Tung C.-K., Lin H.-C., Hsiao S.-H., “Inverse kinematics analysis trajectory planning for a robot arm”. In: 8th Asian Control Conference (ASCC), Kaohsiung, Taiwan, 2011, 965–970.
- [18] Man C.-H., Fan X., Li C.-R., Zhao Z.-H., “Kinematics analysis based on screw theory of a humanoid robot,” Journal of China University of Mining and Technology, vol. 17, no. 1, 2007, 49–52. DOI: 10.1016/S1006-1266(07)60011-X.
- [19] Paul R. P., Shimano B. E., Mayer G., “Kinematic control equations for simple manipulators”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 11, 1981, 449–455. DOI: 10.1109/CDC.1978.268148.
- [20] Zhao T., Yuan J., Zhao M., Tan D., “Research on the Kinematics and Dynamics of a 7-DOF Arm of Humanoid Robot”. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), Kunming, China, 2006, 1553–1558. DOI: 10.1109/ROBIO.2006.340175.
- [21] Ali M. A., Park H. A., Lee C. G., “Closed-form inverse kinematic joint solution for humanoid robots”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 2010, 704–709.
- [22] O’Flaherty R., Vieira P., Grey M., Oh P., A. Bobick, Egerstedt M., Stilman M., “Kinematics and Inverse Kinematics for the Humanoid Robot HUBO2,” Georgia Institute of Technology, Atlanta, GA, USA, Technical Report, 2013.
- [23 Borenstein J., Everett H. R., Feng L., “Where am I? Sensors and methods for mobile robot positioning,” University of Michigan, USA, 1996.
- [24] Borenstein J., “The CLAPPER: A dual-drive mobile robot with internal correction of dead-reckoning errors”. In: IEEE International Conference on Robotics and Automation, San Diego, CA, 1994, 3085–3090. DOI: 10.1109/ROBOT. 1994.351095.
- [25] Lysenkov I., Rabaud V., “Pose estimation of rigid transparent objects in transparent clutter”. In: IEEE Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013, 162–169. DOI: 10.1109/ICRA.2013.6630571.
- [26] Denavit J., Hartenberg R. S., “A kinematic notation for lower-pair mechanisms based on matrices,” ASME Journal of Applied Mechanics, vol. 22, 1955, 215–221.
- [27] Conrad K. L., Shiakolas P. S., Yih T. C., “Robotic calibration issues: Accuracy, repeatability and calibration”. In: Proceedings of the 8th Mediterranean Conference on Control and Automation (MED2000), Rio, Patras, Greece, 2000.
- [28] Ali M. M., Liu H., Stoll R., Thurow K., “Arm grasping for mobile robot transportation using Kinect sensor and kinematic analysis”. In: IEEE International Conference on Instrumentation and Measurement Technology (I2MTC), Pisa, Italy, 2015, 516–521. DOI: 10.1109/I2MTC.2015.7151321.
- [29] Ali M. M., Liu H., Stoll R., Thurow K., “Intelligent Arm Manipulation System in Life Science Labs Using H20 Mobile Robot and Kinect Sensor”. In: IEEE International Conference on Intelligent Systems (IS’16), Sofia, Bulgaria, 2016, 382–387.
- [30] Ali M. M., Liu H., Stoll R., “Multiple Lab Ware Manipulation in Life Science Laboratories using Mobile Robots”. In: IEEE International Conference on Mechatronics, Prague, Czech Republic, 2016, 415–421.
- [31] Ali M. M., H. Liu, N. Stoll, and K. Thurow, “An Identification and localization Approach of Different Labware for Mobile Robot Transportation in Life Science laboratories. In IEEE International Symposium on Computational Intelligence and Informatics, Budapest, Hungary, 2016, 353–358.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53336021-3b03-447d-a117-abeb10332e54