PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation and analysis on the axial compressive performance of recycled concrete‑filled corroded steel tubular columns

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the axial compressive performance of recycled concrete-filled corroded steel tubular columns was assessed with different concrete strength grades (C30, C45, C60) and different corrosion degrees (0%, 5%, 10%, 15%, 20%). Axial compression tests on 15 specimens were conducted, and the corresponding load-displacement curves, skeleton curves, stiffness degradation curves, characteristic load, characteristic displacement, failure modes, and the stress-strain distribution in steel tube and concrete specimens were obtained and thoroughly analyzed. The load-bearing capacity of the specimens was calculated by the typical local and international standards. The static calculation model of the specimens was built by the finite element software, and the load-bearing capacity and deformation performance were evaluated and compared with the test results. The results showed that with the increase of corrosion degree under the same load, the specimen deformation and central bulge are more prominent, whereas the load-bearing capacity and stiffness decrease. As the concrete strength increased, the load-bearing capacity of specimens increased significantly. The calculated load-bearing capacity values and the finite element analysis results agree well with the test values. The findings of this research can be used in different engineering applications.
Rocznik
Strony
art. no. e97, 1--22
Opis fizyczny
Bibliogr. 25 poz., il., tab., wykr.
Twórcy
autor
  • School of Architecture and Civil Engineering, Zhongyuan University of Technology, China
autor
  • School of Architecture and Civil Engineering, Zhongyuan University of Technology, China
autor
  • School of Architecture and Civil Engineering, Zhongyuan University of Technology, China
autor
  • School of Architecture and Civil Engineering, Zhongyuan University of Technology, China
autor
  • School of Architecture and Civil Engineering, Zhongyuan University of Technology, China
autor
  • School of Engineering, RMIT University, Melbourne, Australia
Bibliografia
  • 1. Wang B, Liu X, Yu X. Research on the characteristics and status of recycled concrete filled steel tube. J Appl Mechan Mater. 2014;3307:2320-3.
  • 2. Li J, Guo TT, Gao S, Jiang L, Zhao ZJ, Wang YL. Study on effects of different replacement rate on bending behavior of big recycled aggregate self compacting concrete. J IOP Confer Series. 2018.
  • 3. Song JQ. Research on performance effect factors of flexural member for concrete filled rectangular steel tube. J Appl Mechan Mater. 2013;2685:1130-4. https://doi.org/10. 4028/www.scientific.net/ MM. 405- 408.1130.
  • 4. Li YH, Li BS. The finite element analysis of thin-wall ribbed square steel tube recycled concrete bias column mechanical properties. J Adv Mater Res. 2013;2384:914-918. https://doi. org/10. 4028/ www. scientific. net/ AMR. 690-693. 914.
  • 5. Nour AI, Güneyisi EM. Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns. J Composites Part B. 2019. https://doi.org/10.1016/j.compositesb.2019.106938.
  • 6. Kadhim IT, Güneyisi EM. Code based assessment of load capacity of steel tubular columns infilled with recycled aggregate concrete under compression. J Construct Build Mater. 2018;168:715-731.https://doi.org/10.1016/j.conbuildmat.2018.02.088.
  • 7. Liu ZZ, Lu YY, Li S, Yi S. Behavior of steel tube columns filled with steel-fiber-reinforced self-stressing recycled aggregate concrete under axial compression. J Thin-Walled Struct. 2020. https://doi.org/10.1016/j.tws.2019.106521.
  • 8. Liu ZZ, Lu YY, Li S, Zong S, Yi S. Flexural behavior of steel fiber reinforced self-stressing recycled aggregate concrete-filled steel tube. J Clean Product. 2020. https://doi.org/10.1016/j.jclepro.2020.122724.
  • 9. Xiang XY, Cai CS, Zhao R, Peng H. Numerical analysis of recycled aggregate concrete-filled steel tube stub columns. J Adv Struct Eng. 2016;19(5):717-729. https://doi.org/10.1177/13694.33215618270.
  • 10. Lyu XT, Zhang LQ, Zhang T, Li B, Li H, Yu Y. Prediction and analysis of ultimate bearing capacity of square CFST long column under eccentric compression after acid rain corrosion. J Materials. 2021;14(10):2568-2568. https://doi.org/10.3390/MA14102568.
  • 11. Han LH, Hou C, Wang QL. Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: Experiments. J Construct Steel Res. 2011;71:11-25. https://doi.org/10.1016/j.jcsr.2011.11.012.
  • 12. Zhang T, Lyu XT, Liu HQ, Zhang LQ, Wang JF, Gao S. Axial performance degradation of squared CFST stubs in severe cold and acid rain area. J Construct Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.120612.
  • 13. GB/T 228.1-2010, Metallic materials-Tensile testing-Part 1:Method of test at room temperature[S].China Iron and Steel Association, Beijing, China.
  • 14. CECS 28: 2012. Technical specification for concrete-filled steel tubular structures [S]. China Association for Engineering Construction Standardization, Beijing, China
  • 15. ANSI/AISC 360–10, 2010. Specification for Structural Steel Buildings[S]. American Institute of Steel Construction (AISC), Chicago, USA.
  • 16. Eurocode 4(EC4), 2004, Design of steel and concrete structures, Part 1-1:General rules and rules for buildings[S], EN 1994-1-1:2004, Brussels, European Committee for Standardization
  • 17. DBJ/T 13-51-2010. Technical specification for concrete-filled steel tubular structures [S].Local standards for engineering construction in Fujian Province, Fuzhou, China.
  • 18. AIJ, 1997. Recommendations for design and construction of concrete filled steel tubular structures[S]. Architectural Institute of Japan (AIJ), Tokyo, Japan.
  • 19. British Standards Institutions BS 5400, 2005. Steel, concrete and composite bridges, Part 5, Code of practice for design of composite bridges[S]. London, U.K.
  • 20. Saatcioglu M, Salamat AH, Razvi SR. Confined columns under centric loading. J Struct Eng. 1995;121(11):1547–56. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1547).
  • 21. Schneider SP. Axially loaded concrete-filled steel tubes. J Struct Eng. 1998;124(10):1125-38.
  • 22. Varma AH, Ricles JM, Sause R, Lu LW. Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns. J Construct Steel Res. 2002;58(5):725-758. https://doi.org/10.1016/S0143-974X(01)00099-2.
  • 23. Hu HT, Huang CS, Wu MH, Wu YM. Nonlinear analysis of axi-ally loaded concrete-filled tube columns with confinement effect. J J Struct Eng. 2003;129(10):1322-9. https://doi. org/ 10. 1061/(ASCE)0733-9445(2003)129:10(1322).
  • 24. Baltay P, Gjelsvik A. Coefficient of friction for steel on concrete at high normal stress. J J Mater Civil Eng. 1990;2(1):46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46).
  • 25. Roeder CW, Cameron B, Brown CB. Composite action in concrete filled tubes[J]. J Struct Eng. 1999;125(5):477-484. https://doi.org filled tubes10.1061/(ASCE)0733-9445(1999)125:5(477).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5330201e-051c-4b56-bf76-04f79e5de1b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.