PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Effect of Solidification Time and Addition Amount of Inoculation on Microstructure and Hardness in Lamellar Graphite Cast Iron

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Material suppliers typically recommend different additive amounts and applications for foundry practices. Therefore, even in the production of the same standard materials, different results may be obtained from various production processes on different foundry floors. In this study, the liquid metal prepared with the addition of different proportions of a FeSi-based inoculation, which is most commonly used in foundries in the production of a cast iron material with EN-GJL-250 lamellar graphite cast iron, was cast into sand molds prepared with a model designed to provide different solidification times. In this way, the optimization of the inoculation amounts on the casting structure for different solidification times was investigated. In addition, hardness values were determined depending on solidification time in varying amounts of inoculation additions. SolidCast casting simulation software was used to determine the casting model geometry and solidification time. In the scope of the study, sand casting, modeling, microstructure analysis, image analysis, microstructure analysis, and hardness tests techniques were used. When the results are examined, the required amount of inoculation for the optimal structure is optimized for the application procedure depending on the casting module and the solidification time.
Rocznik
Strony
24--33
Opis fizyczny
Bibliogr. 30 poz., il., tab., wykr.
Twórcy
autor
  • Bayburt University, Turkey
autor
  • Bayburt University, Turkey
  • Bayburt University, Turkey
autor
  • Konya Technical University, Turkey
autor
  • Konya Technical University, Turkey
autor
  • Konya Technical University, Turkey
autor
  • Konya Technical University, Turkey
autor
  • Yavuzsan A.Ş., Turkey
Bibliografia
  • [1] Campbell, J. (2003). Castings. Second Edition. UK: University of Birmingham.
  • [2] Fredriksson, H., Stjerndahl, A. & Tinoco, J. (2005). On the solidification of nodular cast iron and its relation to the expansion and contraction. Materials Science and Engineering A. 413-414, 363-372. DOI: 10.1016/j.msea. 2005.09.028.
  • [3] Stefanescu, D.M. (1988). ASM Handbook Metals Handbook, Vol.15, Casting. ASM International, Metals Park, 296-307.
  • [4] Theuwissen, K., Lacaze, J. & Laffont, L. (2016). Structure of graphite precipitates in cast iron. Carbon. 96, 1120-1128. https://doi.org/10.1016/j.carbon.2015.10.066.
  • [5] Alonso, G., Stefanescu, D.M., Suarez, R., Loizaga, A. & Zarrabeitia, G. (2014). Kinetics of graphite expansion during eutectic solidification of cast iron. International Journal of Cast Metals Research. 27(2), 87-100. https://doi.org/ 10.1179/1743133613Y.0000000085.
  • [6] Hellstrom, K., Dioszegi, A. & Diaconu, L. (2017). A broad literature review of density measurements of liquid cast iron. Metals. 7(5), 165, 1-20. https://doi.org/10.3390/met7050165.
  • [7] Skaland, T., Grong, O. & Grong, T. (1993). A model for the graphite formation in ductile cast iron: Part I . Inoculation mechanisms. Metallurgical and Materials Transactions A. 24A, 2321-2345. https://doi.org/10.1007/BF02648605.
  • [8] Stefanescu, D.M., Alonso, G. & Suarez, R. (2020). Recent developments in understanding nucleation and crystallization of spheroidal graphite in iron-carbon-silicon alloys. Metals. 10(2), 221, 1-39. https://doi.org/10.3390/met10020221
  • [9] Rowley, T.M. (1993). International atlas of casting defects. Schaumburg, IL.
  • [10] Zhang, Z., Flower, H.M. & Niu, Y.Z. (1989). Classification of degenerate graphite and its formation processes in heavy section ductile iron. Materials Science and Technology. 5(7), 657-664. https://doi.org/10.1179/mst.1989.5.7.657.
  • [11] Ferro, P., Fabrizi, A., Cervo, R. & Carollo, C. (2013). Effect of inoculant containing rare earth metals and bismuth on microstructure and mechanical properties of heavy section near-eutectic ductile iron castings. Journal of Materials Processing Technology. 213, 1601-1608. https://doi.org/10.1016/j.jmatprotec.2013.03.012.
  • [12] Skaland, T. (2003). A new method for chill and shrinkage control in ladle treated ductile iron. Keith Millis Symp. Ductile Cast Iron.
  • [13] Borsato, T., Ferro, P., Berto, F. & Carollo, C. (2017). Mechanical and fatigue properties of pearlitic ductile iron castings characterized by long solidification times. Engineering Failure Analysis. 79, 902-912. https://doi.org/10.1016/j.engfailanal.2017.06.007.
  • [14] Çolak, M. & Kaya, S. (2021). Investigation of the effect of inoculant and casting temperature on fluidity properties in the production of spheroidal graphite cast iron. Transactions of the Indian Institute of Metals. 74(2), 205-214. DOI: 10.1007/s12666-020-02159-5.
  • [15] Skaland, T. (2005). Nucleation mechanisms in ductile iron, Elkem foundry products. Norway: Kristiansand.
  • [16] Gobinath, V.M. & Annamalai, K. (2017). Effect of inoculation in chilled cast iron with different chill. Materials Today: Proceedings. 4(10), 10863-10869. https://doi.org/10.1016/j.matpr.2017.08.040.
  • [17] Seidu, S.O. & Ripoşan, I. (2011). Thermal analysis of inoculated ductile irons. UPB Scientific Bulletin Series B. 3/2. 73(2), 241-254. ISSN 1454-2331.
  • [18] Fraś, E. & Górny, M. (2012). Inoculation effects on cast iron. Archives of Foundry Engineering. 12(4), 39-46. DOI: 10.2478/v10266-012-0104-z.
  • [19] Fraś, E. & Lopez, H. (1994). Generation of inner pressure during solidification of eutectic cast iron. AFS Transactions. 102, 597-601.
  • [20] Nastac, L, & Stefanescu, D.M. (1995). Forecast of grey-to-white transition in cast iron by solidification modeling. AFS Transaction. 103, 329-337.
  • [21] Fraś, E. & Górny, M. (2010). Mechanism of carbon influence on the transition from graphite to cementite eutectic in cast iron. Archives of Foundry Engineering. 10(2), 51-56. ISSN (1897-3310).
  • [22] Effects of manganese in nodular (SG) iron, BCIRA Broadsheet, 2006, 211.
  • [23] Koch, M., Soulas, K. (2014). Inoculation of grey and ductile iron. 7th International Ankiros Casting Congress, September 12-13, Istanbul, Turkey.
  • [24] Webster, P.D. (1980). Fundamentals of foundry technology. First Published, Portcullis Press Ltd., 246-252.
  • [25] Jain, P.L. (1992). Principles of foundry technology. Second Edition. New Delhi: Tata McGraw-Hill Publishing Company Ltd., 184-188.
  • [26] Ductile Iron Molten Metal Prossessing. (1986). AFS Publication, 2nd Edition.
  • [27] Quality Control Commite Cast Iron Division, factors affecting ductile iron nodule count: a literature review, AFS Transactions, 1993, 93(224), 1031-1097.
  • [28] Heine, R.W. (1993). Nodule count: the benchmark of ductile iron solidification. AFS Transactions. 93(84), 879-884.
  • [29] Karadeniz, E., Çolak, M. & Barutçu, F. (2017). Investigation of the effect of inoculant type and amount on microstructure and mechanical properties in the production of GGG-60 spheroidal graphite cast iron. Omer Halisdemir University Journal of Engineering Sciences. 6(1), 275-282. (in Turkish)
  • [30] Çolak, M., Arslan, İ. & Gavgali, E. (2018). Solidification modeling of gray cast irons and comparison with real castings. Engineering Sciences (NWSAENS). 13(4), 280-290. (in Turkish) http://dx.doi.org/10.12739/NWSA.2018.13.4.1A0419.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-532dc4d9-16e5-47e6-8ee9-7aca9c336b54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.