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The paper presents ways to optimise computer algorithms jor the calculation oj acoustic
field intensity distribution in a body oj water jor specific hydrological conditions while
aiming to reduce the computation time. Examples are given including an algorithm that
minimises the number oj range section zones. Other examples include ways to eliminate some
oj the time-consuming activities by determining parabola sectors instead oj circular sectors
as jragments oj range profiles. The consequences, i.e. the possibility oj varying results, are
discussed. Other optimising possibilities are explored, as we/l.

INTRODUCTION

Central to the operation of the majority of modem underwater acoustics systems is their
ability to predict sound propagation routes and acoustic field intensity distribution. When
based on an accurate and up-to-date measurement of sound velocity range distribution,
prediction becomes a valuable tool for the operator giving him information about the actual
range of target detection, spatial distribution of detection zones and zones of acoustic shadow
leading to an optimal choice of settings.

Underwater acoustics systems built by the Department of Acoustics come with a meter
(designed by the Department) for measuring sound velocity range distribution. lnstalled in a
computer, the meter calculates the spatial distribution of wave intensity using the sound ray
density method [l]. The method helps to eliminate the indefiniteness of intensity in caustics
and includes field distribution for actual beam pattems of acoustic antennas. The essence of
the method lies in the fact that it determines a big number of sound rays, which despite the
advances of computer technologies, takes up too much time compared to user expectations.

41

mailto:ragola@eti.pg.gda.pl


HYDROACOUSTICS Volume 5

Developed almost a decade ago, what is actually a computer system for predicting sound
propagation routes and target detection conditions in a specific hydrological profile, is
becoming obsolete. Its updated version must first of all use the Windows operating system,
known to all users, use a commonly accepted protocol for external communications, and use a
link other than RS (some laptops no longer have it) but should also ensure optimised
calculation routines. The method for determining sound propagation routes and intensity in
the particular zones of the body of water involves a lot of computation. Despite the fast
progress in computer technology and new computers being 10 times more powerful than
when the project first started, the results are not displayed instantly. Hence the need to reduce
the computation time by optimising the algorithms.

l. EXAMPLES OF OPTIMISATIONS

Computation time can be significantly shortened by cutting back on the measurement
data, selecting the right number of rays and optimising the algorithm for determining sound
ray routes.

Using the ray density method, sound ray routes are determined under the assumption
that the velocity gradient is constant in subsequent layers of the water. Compared to the
algorithm that assumes constant velocity in every layer, this solution ensures a much higher
computation accuracy. The result is a curving ofthe ray's path inside each layer, with the path
becoming a section of the circle.

To determine the path of each ray in each layer, we must calculate the co-ordinates of
the centre of the circle and its radius. The total number of mathematical operations is
proportional to the number of layers, number of rays and the number of numerical operations
necessary to determine the parameters ofthe sound ray's path in each layer.

It follows from the operating principle of the sound velocity distribution meter that the
number of layers is equal to the number of velocity measurements taken by the meter. The
meter measures velocity every 20 cm, which for deep waters yields a big number of layers.
That number can be reduced, when the velocity gradient in adjacent layers is identical to the
assumed error. To that end, an algorithm was developed that allows automatic determination
of the number and width of layers and the value of the gradient in the layers.

This is how the algorithm operates. Let v(n) denote measured gradient values and urn) -
the values of the velocity trend in a specific layer. The values of the trend urn) are on a
straight line selected to ensure that the mean v(n)-u(n) is equal to zero in that layer and that
mean square variance v(n)-u(n) is the lowest.

The sequence urn) is treated as linear approximation of the sequence v(n), and the tilt of
the trend's straight line - as the velocity gradient in the given layer. The trend is determined
first for sampies from n= l to n=4 to compute the standard deviation 8s r of the variance
between sequences (v(n)} and {utnt},

If e> 8, where e means the assumed computational error, the error will be the greater of
the numbers e« and 8. When Iv(4)-u(4)1<8, the next trend is determined in the range n=l to
n=5 and cheeks are made to see if Iv(5)-u(5)1< 8. The procedure is repeated until Iv(n)-
u(n)l>e. The number n=Ni, for which the inequality occurs denotes the boundary of the first
layer. Beginning from the sample of that number the above procedure is repeated until the
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criterion is fulfilled Iv(n+NI-I)-u(n+NI-I)I>c. The cycle is repeated until all data are
exhausted.

The result is that the narrowest layers are 60 cm wide, while the others differ in width
depending on how fast the velocity gradient changes. The number of layers go es down as the
assumed error c goes up.

Fig.1 shows the measured distribution of sound velocity and how it was approximated
using straight lines deterrnined under the assumption that 8=0.4 m/s. Please note, that the
algorithm has helped to reduce the number of layers from 180 to 13. Fig. 2 shows the
approximation error in the function of depth. The mean square error of the approximation is
0.24 m/s, which given the error of meter readings at 0.2 m/s is quite satisfactory. A bigger
error c reduces the number of layers even further.
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In an analysis of algorithms used for computer computations it was found that the time
can be significantly reduced by avoiding the numerous extractions of roots required for
computing the profile of sound velocity, described with the circle equation. The extraction of
roots may be skipped by approximating the segment of the circle with a segment of a
parabola.

If the sound velocity gradient is constant, the ray of sound coming out horizontal!y from
the source lies on a circle, described with the equation:

(1)

where z is the current depth, x - horizontal co-ordinate of the source distance, R = Co /g is the
radius of the circle, Co - sound velocity at sources depth, g=łY.c/ łY.z- sound velocity gradient.
Similar formulas for subsequent layers and varying beginning tilt of the rays will be left out
for reasons of space.

The circle described with formula (1) can be approximated with a parabola in the
equation:

l ,
z = -(x')-

R

where x ' is the approximated value of variable x. The approximation can be done for the upper
segment of the circle as illustrated in Fig.3. This condition is fulfilled in al! practical

(2)

computations.
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Fig. 3. A pieto rial representation of how the eircle equation deseribing the shape ofthe sound veloeity
profile in the measurement layer is replaeed with a parabola equation

An important consequence of the approximation is the deviation as shown in the Figure
zlx=x '-x between the values of both functions for the same values of depth z. It can be shown
that the value of deviation Llx is given in the formula:
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(4)

By inserting the thickness of the layer with a constant gradient z=ća. and g =Sct Az, we
can determine the error in the layer, the error being introduced to predict propagation routes
resulting from the change from circle to parabola:

Llx= LIz ~
2 V0: (5)

As you can see, the error is proportional to the thickness of the layer and increases only
along the root of the relative change of sound velocity in the layer. As the number of layers
goes up (depth of the water), the errors do ten d to sum up. On the other hand, sharp gradients
cannot be found in the entire section of the water and tend to occur in thin layers, close to the
surface in summertime. Because the algorithm matches the thickness of the layer to the value
of the gradient (the bigger the gradient the thinner the layer), the total error introduced by the
approximation usually has no technical effect.

We can estimate the error that occurs for strong increases in sound velocity Llc=lrn/s in
a O.2m layer. As it is being submerged, the meter takes sound velocity measurements every
20cm (unless it is being submerged fas ter than O.4rn/s in which case it takes 2 measurements
every second). The deviation LIx is then 2.58mm, while the radiu s of the circle cuts across the
boundary ofthe layer at the distance x=5.48m. The relative error is then 4.7%0 only.

[l] includes two graphic examples of the variances between the results of computations
when made using actual measurements of the profile with an acoustic duet using both
methods in a space of 300m. The examples clearly show the minimal effect of the method
chosen.

The above optimisation which replaces a circle segment with a parabola segment should
not be viewed as a peculiar idea. When raised to the second power, i.e. the contents of the
parenthesis in equation (l), you can see that with the assumption usually fulfilled, ray R is
much bigger than the thickness of the measurement layer zlz, and the circle equation becomes
a parabola equation (3). It is easier, however, to analyse the errors using the above method
than to analyse the effects (as they happen?) of introducing the simplifying assumption.

2. OTHER EXAMPLES OF OPTIMISATIONS

Other optimisations were designed to eliminate the big number of computations and
create and use as many libraries as possible to replace the computations. This sort of
multiplication is a mus t because of how field intensity is determined, i.e. by adding the
number ofrays that cut through a possibly narrowest segment ofthe water.

One possibility is to check the values of gradients in the layers and rule out
computations for zero gradients (very frequent) or when gradients are repeated. The end effect
is a reduced number of measurement layers (which are now unequal), i.e. their thickness is
extended to match the changing values ofthe gradients.

A spectacuIar exampIe of how Iibraries can be put to work is a tabIe of vaIues of
trigonometric functions that lend themselves very difficult to compute. The functions occur
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when the emission angles of the rays from the layers are taken into account. The tables also
inc1ude the values of other recurring parameters of equations.

Another example of how computations can be optimised is a complete reversal of how
they are done - the value of the function x(z) is computed rather that of z(x).
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