Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper a collaborative coexistence mechanism for white space base stations is proposed. We look at the case where these base stations operate in geographical areas where the density of used TV channels is such that only one channel is left for broadband access. We show how with cooperative closed loop control and a clustering strategy, it is possible to find feasible power assignments that provide a flexible and stable coverage solution. The framework under which we study our proposal is based on the IEEE 802.22 standard, which provides white space guidelines for applications in broadband access or machine-to-machine communications. We propose and evaluate a self-organized, collaborative power control and design strategy to enable effective coexistence of base stations under extreme bandwidth constraints. Finally, we also portray how proposed approach positively compares against others from different wireless access technologies.
Słowa kluczowe
Rocznik
Tom
Strony
38--48
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- J. Warren McClure School of Information and Telecommunication Systems, Ohio University, 20 E. Union St., 1 Ohio University, Athens, OH 45701, USA
autor
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Campus Cumbayá, PO-Box 17-1200-841, Quito, Ecuador
Bibliografia
- [1] FCC, “Federal Communications Commission, Part 15 TV Bands Devices, Second Report and Order and Memorandum Opinion and Order”, FCC 08-260, ET Docket No. 04-186, 2008.
- [2] C. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhammer, and W. Caldwell, “IEEE 802.22: The first cognitive radio wireless regional area network standard”, IEEE Commun. Mag., vol. 47, no. 1, pp. 130–138, 2009.
- [3] Weightless Special Interest Working Group, “Weightless System Specification”, 2012 [Online]. Available: http://weightless.org
- [4] K. Harrison, S. Mishra, and A. Sahai, “How much white-space capacity is there?”, in Proc. IEEE Int. Symp. on New Front. in Dynam. Spectrum Access Netw. IEEE DySPAN 2010, Singapore, Singapore, 2010 (doi: 10.1109/DYSPAN.2010.5457914).
- [5] J. Arauz and Z. Miller, “Self-coexistence in the dense case for white spaces”, in Proc. of IFIP Wireless Days (WD 2012, Dublin, Ireland, 2012 (doi: 10.1109/WD.2012.6402844).
- [6] Z. Miller and J. Arauz, “Self-coexistence with autonomous target variable selection for white space devices”, in Proc. of Inform. and Telecommun. Education and Res. Assoc. Conf. ITERA 2013, Cincinnati, OH, USA, 2010.
- [7] White Space database [Online]. Available: http://whitespaces.spectrumbridge.com/whitespaces/home.aspx (accessed on March 10, 2017).
- [8] R. Madan, S. Boyd, and S. Lall, “Fast algorithms for resource allocation in wireless cellular networks”, IEEE/ACM Trans. on Netw., vol. 18, no. 3, pp. 973–984, 2010.
- [9] S. Pillai, T. Suel, and S. Cha, “The Perron-Frobenius theorem: some of its applications”, IEEE Sig. Proces. Mag., vol. 22, no. 2, pp. 62–75, 2005.
- [10] 3GPP, “Considerations on interference coordination in heterogeneous networks”, LG Electronics, TSG RAN WG1 R1-101369, 2010.
- [11] 3GPP, “Summary of the description of candidate eICIC solutions”, CMCC, TSG-WG1 R1-104968, 2010.
- [12] M. Bennis and D. Niyato, “A Q-learning based approach to interference avoidance in self-organized femtocell networks”, in IEEE GLOBECOM Workshops (GC Wkshps), Miami, FL, USA, 2010, pp. 706–710 (doi: 10.1109/GLOCOMW.2010.5700414).
- [13] A. Galindo-Serrano and L. Giupponi, “Distributed Q-learning for interference control in OFDMA-based femtocell networks”, in Proc. of 71st. IEEE Veh. Technol. Conf. VTC201-Spring, Taipei, Taiwan, 2010 (doi: 10.1109/VETECS.2010.5493950).
- [14] A. Serrano, L. Giupponi, and M. Dohler, “BeFEMTO’s selforganized and docitive femtocells”, in Proc. Future Network and MobileSummit 2010 Conf., Florence, Italy, 2010, pp. 1–8, 2010.
- [15] G. P. Villardi, H. Harada, F. Kojima, and H. Yano, “Multilevel protection to broadcaster contour and its impact on TV white space availability”, IEEE Trans. on Veh. Technol., vol. 66, no. 2, pp. 1393–1407, 2017 (doi: 10.1109/TVT.2016.2566675).
- [16] S. Biswas, S. Biswas, A. Mukherjee, and M. K. Naskar, “Cooperative sensing and allocation scheme using IEEE 802.22-Standard”, in Proc. of IEEE Int. Conf. on Adv. Networks and Telecommun. Syst. ANTS 2014, New Delhi, India, 2014 (doi: 10.1109/ANTS.2014.7057246).
- [17] IEEE, “IEEE Standard for Information technology – Telecommunications and information exchange between systems, Local and metropolitan area networks, Specific requirements, Part 19: TV White Space Coexistence Methods”, IEEE Std 802.19.1-2014, 2014.
- [18] S. Filin, K. Ishizu, F. Kojima, and H. Harada, “Implementation of TV white space coexistence system based on IEEE 802.19.1 Standard”, in Proc. IEEE Conf. on Stand. for Commun. and Netw. CSCN 2015, Tokyo, Japan, 2015, pp. 206–211 (doi: 10.1109/CSCN.2015.7390445).
- [19] W. Hu, M. Gerla, G. A. Vlantis, and G. J. Pottie, “Efficient, flexible, and scalable inter-network spectrum sharing and communications in cognitive IEEE 802.22 networks”, in Proc. 1st Int. Worksh. on Cognit. Radio and Adv. Spectrum Manag., Aalborg, Denmark, 2008 (doi: 10.1109/COGART.2008.4509981).
- [20] K. Ezirim, L. Liu, P. Ji, and S. Sengupta, “Distributed and cheatproof spectrum contention scheme for IEEE 802.22 WRAN networks”, in Proc. IEEE Wirel. Commun. and Netw. Conf. WCNC 2015, New Orleans, LA, USA, 2015, pp. 1095–1100 (doi: 10.1109/WCNC.2015.7127622).
- [21] IEEE, “IEEE Standard for Information Technology – CognitiveWireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands”, IEEE Std 802.22-2011, pp. 1–680, 2011.
- [22] J. MacQueen, “Some methods for classification and analysis of multivariate observations”, in Proc. 5th Berkeley Symp. on Math. Statistics and Probability, Berkeley, CA, USA, vol. 1, pp. 281–290, 1967.
- [23] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in a dataset via the Gap statistic”, J. of the Royal Statis. Soc., vol. 63, no. 2, pp. 411–423, 2001.
- [24] J. Egli, “Radio propagation above 40 MC over irregular terrain”, Proceedings of the IRE, vol. 45, no. 10, pp. 1383–1391, 1957.
- [25] J. Seybold, Introduction to RF Propagation. Hoboken, New Jersey: Wiley, 2005, pp. 141–143.
- [26] C. Lee and H. Kang, “Cell planning with capacity expansion in mobile communications: a tabu search approach”, IEEE Trans. on Veh. Technol., vol. 49, no. 5, pp. 1678–1691, 2000.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53291991-79c7-4185-8216-4bb9e25ac48f