Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A pure molybdenum (Mo) coating layer was manufactured by using the atmospheric plasma spray (APS) process and its wear and corrosion characteristics were investigated in this study. A Mo coating layer was prepared to a thickness of approximately 480 μm, and it had sound physical properties with a porosity of 2.9% and hardness of 434 Hv. Room temperature dry wear characteristics were measured through a ball-on-disk test under load conditions of 5 N, 10 N and 15 N. Based on the coefficient of friction graph at 5 N and 10 N, the oxides formed during wear functioned as a wear lubricant, thereby confirming an increase in wear resistance. However, at 15 N, wear behavior changed, and wear occurred due to splat pulling out. A potentiodynamic polarization test was conducted under an artificial seawater atmosphere, and Ecorr and Icorr measured 0.717 V and 7.2E-5 A/cm2, respectively. Corrosion mainly occurred at the splat boundary and pores that were present in the initial state. Based on the findings above, the potential application of APS Mo coating material was also discussed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
81--85
Opis fizyczny
Bibliogr. 18 poz., fot., rys.
Twórcy
autor
- Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea
autor
- Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea
autor
- POSCO Technical Research Laboratories, Gwangyang 57807, Republic of Korea
autor
- Surface Treatment R&D Group, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea
autor
- Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea
Bibliografia
- [1] S.E. Prameela, T.M. Pollock, D. Raabe, M.A. Meyers, A. Aitkaliyeva, K.L. Chintersingh, Z.C. Cordero, L. Graham-Brady, Nat. Rev. Mater. 1-8 (2022).
- [2] K. Mondal, L. Nuñez III, C.M. Downey, I.J. Van Rooyen, Mater. Sci. Energy Technol. 4, 208-210 (2021).
- [3] K.V. Yusenko, S. Riva, W.A. Crichton, K. Spektor, E. Bykova, A. Pakhomova, A. Tudball, I. Kupenko, A. Rohrbach, S. Klemme, F. Mazzali, S. Margadonna, N.P. Lavery, S.G.R. Brown, J. Alloys Compd. 738, 491-500 (2018).
- [4] J. Vetter, G. Barbezat, J. Crummenauer, J. Avissar, Surface and Coatings Technology 200 (5-6), 1962-1968 (2005).
- [5] G. Matache, C. Puscasu, A. Paraschiv, O. Trusca, Appl. Mech. Mater. 811, 19-23 (2015).
- [6] B. Gérard, Surf. Coat. Technol. 201 (5), 2028-2031 (2006).
- [7] Y.J. Hwang, K.W. Kim, H.Y. Lee, S.C. Kwon, K.A. Lee, J. Korean. Powd. Metall. Inst. 28 (4), 310-316 (2021).
- [8] E.R. Braithwaite, A.B. Greene, Wear 46 (2), 405-432 (1978).
- [9] Z. Liu, M. Hua, Tribol. Int. 32 (9), 499-506 (1999).
- [10] B. Hwang, J. Ahn, S. Lee, Surf. Coat. Technol. 194 (2-3), 256-264 (2005).
- [11] J. Ahn, B. Hwang, S. Lee, J. Therm. Spray Technol. 14 (2), 251-257 (2005).
- [12] S. Usmani and S. Sampath, Wear 225-229, 1131-1140 (1999).
- [13] L. Păduraru, L. Nedeloni, N. Kazamer, R. Muntean, D.T. Pascal, P.C. Vălean, M.D. Nedeloni, IOP Conf. Ser. Mater. Sci. Eng. 416(1), 012027 (2018).
- [14] S. Sampath, H. Herman, J. Therm. Spray Technol. 5(4), 445-456 (1996).
- [15] P. Das, S. Paul, P.P. Bandyopadhyay, Int. J. Refract. Met. Hard Mater. 78, 350-359 (2019).
- [16] V.V. Sobolev, J.M. Guilemany, J. Nutting, J.R. Miquel, Inter. Mater. Rev. 42 (3), 117-136 (1997).
- [17] S.F. Wayne, S. Sampath, V. Anand, Tribol. Trans. 37 (3), 636-640 (1994).
- [18] W. Cairang, T. Li, D. Xue, H. Yang, P. Cheng, C. Chen, Y. Sun, Y. Zeng, X. Ding, J. Sun, Corros. Sci. 186, 109469 (2021).
Uwagi
This work was supported by the technology innovation program (No. 20011286) funded by the Ministry of Trade, Industry & Energy (MOTIE), Korea.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5325d175-158d-411d-9936-7e754e029d8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.