PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drying of red beetroot after osmotic pretreatment: Kinetics and quality considerations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents experimental studies on drying kinetics and quality effects of red beetroot (Beta vulgaris L.) after convective drying with a preliminary osmotic pretreatment. The effects of the osmotic agent (NaCl) concentration and the osmotic bath time on the product colour and nutrient content preservation, the water activity, and rehydration ability after drying were analysed. Osmotic dehydration curves and Solid Gain (SG), Water Loss (WL), Weight Reduction (WR) were determined. It was proved that drying of beetroot with osmotic pretreatment contributes to shorter drying time, smaller water activity, higher retention of betanin, better colour preservation, and a greater degree of water resorption.
Rocznik
Strony
345--354
Opis fizyczny
Bibliogr. 31 poz., tab., rys.
Twórcy
  • Poznan University of Technology, Institute of Technology and Chemical Engineering, Department of Process Engineering, Pl. Marii Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Poznan University of Technology, Institute of Technology and Chemical Engineering, Department of Process Engineering, Pl. Marii Skłodowskiej-Curie 2, 60-965 Poznań, Poland
Bibliografia
  • 1. Adams M., Motarjemi Y., 1999. Basic food safety for health workers. WHO, Geneva.
  • 2. Chavan U.D., Amarowicz R., 2012. Osmotic dehydration process for preservation of fruits and vegetables, J. Food Res., 1, 202-209. DOI: 10.5539/jfr.v1n2p202.
  • 3. Chua K.J., Chou S.K., Mujumdar A.S., Ho J.C., Hon C.K., 2004. Radiant-convective drying of osmotic treated agro-products effect on drying kinetics and product quality. Food Control, 15, 145-158. DOI: 10.1016/S0956-7135(03)00026-4.
  • 4. Figiel A., 2010. Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuummicrowave methods. J. Food Eng., 98, 461-470. DOI: 10.1016/j.jfoodeng.2010.01.029.
  • 5. Gokhale S.V., Lele S. S., 2011. Dehydration of red beet root (Beta vulgaris) by hot air drying process optimization and mathematical modelling. Food Sci. Biotechnol., 20, 955-964. DOI: 10.1007/s10068-011-0132-4.
  • 6. Gokhale S.V., Lele S.S., 2012. Optimization of convective dehydration of beta vulgaris for colour retention. Food Bioprocess Technol., 5, 868-878. DOI: 10.1007/s11947-010-0359-8.
  • 7. Jayaraman K.S., Das Gupta D.K., 2007. Drying of fruits and vegetables, In: Mujumdar A.S. (Ed.), Handbook of Industrial Drying. CRC Press Taylor&Francis Group. New York, 611-631.
  • 8. Khan M.R., 2012. Osmotic dehydration technique for fruits preservation – A review. Pak. J. Food Sci., 22, 71-85.
  • 9. Kowalska H., Lenart A., 2001. Mass exchange during osmotic pretreatment of vegetables. J. Food Eng., 49, 137-140. DOI: 10.1016/S0260-8774(00)00214-4.
  • 10. Kowalski S.J., Łechtańska J.M., Szadzinska J., 2013. Quality aspects of fruit and vegetables dried convectively with osmotic pretreatment. Chem. Process Eng., 34, 51-62. DOI: 10.2478/cpe-2013-0005.
  • 11. Kowalski S.J., Mierzwa D., 2011. Influence of preliminary osmotic of carrot (Daucus Carota L.). Chem. Process Eng., 32, 185-194. DOI: 10.2478/v10176-011-0014-6.
  • 12. Kowalski S.J., Szadzinska J., 2014. Convective-intermittent drying of cherries preceded by ultrasonicassisted osmotic dehydration. Chem. Eng. Process. Process Intensif., 82, 65–70. DOI: 10.1016/j.cep.2014.05.006.
  • 13. Kowalski S.J., Szadzinska J., 2014. Kinetics and quality aspects of beetroots dried in non-stationary conditions. Dry. Technol., 32, 1310–1318. DOI: 10.1080/07373937.2014.915555.
  • 14. Kowalski S.J., Rajewska K., 2009. Convective drying enhanced with microwave and infrared radiation. Dry. Technol., 27, 878–887. DOI: 10.1080/07373930903014837.
  • 15. Manivannan P., Rajasimman M., 2009. Optimization of process parameters for the osmotic dehydration of beetroot in sugar solution. J. Food Eng., 34, 804-824 DOI: 10.1111/j.1745-4530.2009.00436.x.
  • 16. Mujumdar A. S. (ed.), 2007. Handbook of Industrial Drying, Third Edition, Taylor & Francis Group, New York.
  • 17. Mputu K.J., Thonart P., 2013. Optimisation of Production, Freeze-drying and Storage of Pseudomonas fluorescens BTP1. Int. J. Microbiol. Res., 5, 2, 371-374. DOI : 10.9735/0975-5276.5.2.371-374.
  • 18. Nastaj J., Witkiewicz K., 2004. Theoretical analysis of vacuum freeze drying of biomaterials at contact-radiantmicrowave heating, Chem. Proc. Eng., 25, 505-525.
  • 19. Nilson N., 1970. Studies into pigments in beetroot. Lantbrukshogskolans Annaler, 36, 179-219.
  • 20. Pabis S., 1999. The initial phase of convection drying of vegetables and mushrooms and the effect of shrinkage. J. Agric. Eng. Res., 72, 187-195. DOI: 10.1006/jaer.1998.0362.
  • 21. Pabis S., Jaros M., 2002. The first period of convection drying of vegetables and the effect of shape-dependent shrinkage. Biosyst. Eng., 81, 201 – 211. DOI: 10.1006/bioe.2001.0015.
  • 22. Pakowski Z., Adamski R., 2007. The comparison of two models of convective drying of shrinking materials using apple tissue as an example. Dry. Technol., 25, 1139–1149. DOI: 10.1080/07373930701438428.
  • 23. Piasecka E., Uczciwek M., Klewicki R., Konopacka D., Mieszczakowska-Frąc M., Szulc M., Bonazzi C., 2012. Effect of long-time storage on the content of polyphenols and ascorbic acid in osmo-convetively dried and osmofreeze-dried fruits. J. Food Proces. Preserv., 1745-4549. DOI: 10.1111/j.1745-4549.2011.00637.x.
  • 24. Rahman M.S., Labuza T.P., 2007. Water activity and food preservation, In: Rahman M.S (Ed.), Handbook of Food Preservation. 2nd edition. 20, 448-471.
  • 25. Rastogi N.K., Raghavarao K.S.M.S., Niranjan K., Knorr D., 2002. Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends Food Sci. Technol., 13, 48–59. DOI: 10.1016/S0924-2244(02)00032-8.
  • 26. Sagar V.R., Suresh Kumar P., 2010. Recent advances in drying and dehydration of fruits and vegetables: A review. J. Food Sci. Technol., 47, 15–26. DOI: 10.1007/s13197-010-0010-8.
  • 27. Sorour H., El-Mesery H., 2014. Effect of microwave and infrared radiation on drying of onion slices. Int.. J. Res. Appl. Nat. Social Sci., 2, 5, 119-130.
  • 28. Sunil Varun, Naveen Sharma 2013. Modelling the drying kinetics of green peas in a solar dryer and under open sun. Int. J. Energy Env., 4, 4, 663-676.
  • 29. Witrowa-Rajchert D., 2004. Rehydration as an index of changes occurring in plant tissuues during dryling. Inż. Chem. i Proc., 25, 2051-2060 (in Polish).
  • 30. Witrowa-Rajchert D., Rząca M., 2009. Effect of drying method on the microstructure and physical properties of dried apples. Dry. Technol., 27, 903-909. DOI: 10.1080/07373930903017376.
  • 31. Vadivambal R., Jayas D.S., 2007. Changes in quality of microwave-treated agricultural products–a review. Biosystems Eng., 98, 1–16. DOI: 10.1016/j.biosystemseng.2007.06.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-531ed445-e07e-43b3-a80c-4a24eba53f20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.