PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The challenge of reconstructing the Phanerozoic sea level and the Pacific Basin tectonics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relationships between the interior dynamics of our planet and global sea level can be unravelled when plate-tectonic reconstructions are available for the entire Earth. A review of global tectonics reveals significant deficiencies in our understanding of the geodynamic evolution of the Pacific (Panthalassa or Proto-Pacific) during the Cambrian-Jurassic time-span. This particular, but major, shortcoming presents a true challenge for modern geoscientists, who are encouraged to produce a detailed plate-tectonic reconstruction of the Pacific for the pre-Cretaceous in order to advance our understanding of Phanerozoic sea-level change. A set of approaches, including geological/geophysical modelling, investigation of accretionary prisms, palaeobiogeographical studies, and careful examination of eustatic sea-level changes, are proposed that will help geoscientists tackle the challenge of understanding how Pacific geodynamics affected global sea level during the Phanerozoic.
Czasopismo
Rocznik
Strony
235--243
Opis fizyczny
Bibliogr. 67 poz.
Twórcy
  • Division of Mineralogy and Petrography, Geology and Geography Faculty, Southern Federal University, Zorge Street 40, Rostov-na-Donu, 344090, Russia
  • Department of Geology and Geophysics, SOEST, University of Hawaii at Manoa, 1680 East-West Road, Honolulu, HI, 96822, USA
  • Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań, Poland;
Bibliografia
  • Adams, C.J., 2008. Geochronology of Paleozoic terranes at the Pacific Ocean margin of Zealandia. Gondwana Research 13, 250-258.
  • Becker, T.W., Conrad, C.P., Buffett, B. &Müller, R.D., 2009. Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport. Earth and Planetary Science Letters 278, 233-242.
  • Chatterjee, S. & Scotese, C., 2010. The wandering Indian plate and its changing biogeography during the Late Cretaceous-Early Tertiary period. [In:] S. Bandyopadhyay (Ed.): New aspects of Mesozoic biodiversity. Heidelberg, Springer, pp. 105-126.
  • Cocks, L.R.M. & Torsvik, T.H., 2002. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. Journal of the Geological Society, London 159, 631-644.
  • Cogné, J.-P., Humler, E. & Courtillot, V., 2006. Mean age of oceanic lithosphere drives eustatic sea-level change since Pangea breakup. Earth and Planetary Science Letters 245, 115-122.
  • Collins, W.J., 2003. Slab pull, mantle convection, and Pangaean assembly and dispersal. Earth and Planetary Science Letters 205, 225-237.
  • Conrad, C.P. & Husson, L., 2009. Influence of dynamic topography on sea level and its rate of change. Lithosphere 1, 110-120.
  • Conrad, C.P., Lithgow-Bertelloni, C. & Louden, K.E., 2004. Iceland, the Farallon slab, and dynamic topography of the North Atlantic. Geology 32, 177-180.
  • Courtillot, V., Davaille, A., Besse, J. & Stock, J., 2003. Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters 205, 295-308.
  • Engebretson, D.C., Cox, A. & Gordon, R.G., 1984. Relative motions between oceanic plates of the Pacific basin. Journal of Geophysical Research 89, 10291-10310.
  • Engebretson, D.C., Cox, A. & Gordon, R.G., 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Paper 206, 1-59.
  • Grigne, C., Labrosse, S. & Tackley, P.J., 2005. Convective heat transfer as a function of wavelength: implications for the cooling of the Earth. Journal of Geophysical Research 110, B03409.
  • Hager, B.H., Clayton, R.W., Richards, M.A., Comer, R.P. & Dziewonski, A.M., 1985. Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313, 541-545.
  • Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences 20, 353-431.
  • Hallam, A., 1984. Pre-Quaternary sea-level changes. Annual Reviews of Earth and Planetary Sciences 12, 205-243.
  • Hallam, A., 2001. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeography, Palaeoclimatology, Palaeoecology 167, 23-37.
  • Haq, B.U. & Al-Qahtani, A.M., 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia 10, 127-160.
  • Haq, B.U. & Schutter, S.R., 2008. A chronology of Paleozoic sea-level changes. Science 322, 64-68.
  • Harrison, C.G.A., 1990. Long-term eustasy and epeirogeny in continents. [In:] R.R. Revelle (Ed.): Sea-level change. Washington, D.C., National Academy Press, 141-158.
  • Heine, Chr. Müller, R.D. & Gaina, C., 2004. Reconstructing the lost eastern Tethys Ocean Basin: convergence history of the SE Asian margin and marine gateways. [In:] P. Clift, P. Wang, W. Kuhnt & E. Hayes (Eds): Continent-ocean interactions within East Asian marginal seas. AGU Monograph 149, 37-54.
  • Kalnins, L.M. & Watts, A.B., 2009. Spatial variations in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism. Earth and Planetary Science Letters 286, 89-100.
  • Kerr, A.C. & Mahoney, J.J., 2007. Oceanic plateaus: problematic plumes, potential paradigms. Chemical Geology 241, 332-353.
  • Kominz, M.A., 1984. Oceanic ridge volume and sea-level change - an error analysis. American Association of Petroleum Geologists Memoir 36, 109-127.
  • Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintseva, S. & Scotese, C.R., 2008. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain boreholes: an error analysis. Basin Research 20, 211-226.
  • Labrosse, S. & Jaupart, C., 2007. Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth and Planetary Science Letters 260, 465-481.
  • Larson, R.L., 1991a. Geological consequences of superplumes. Geology 19, 963-966.
  • Larson, R.L., 1991b. Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology 19, 547-550.
  • Lenardic, A., Moresi, L.-N., Jellinek, A.M. & Manga, M., 2005. Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth and Planetary Science Letters 234, 317-333.
  • Leng, W. & Zhong, S., 2010. Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces. Earth and Planetary Science Letters 291, 207-214.
  • Li, Z.X. & Zhong, S.J., 2009. Supercontinent-superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics. Physics of the Earth and Planetary Interiors 176, 143-156.
  • Lithgow-Bertelloni, C. & Richards, M.A., 1998. The dynamics of Cenozoic and Mesozoic plate motions. Reviews of Geophysics 36, 27-78.
  • Lithgow-Bertelloni, C. & Silver P.G.,1998. Dynamic topography, plate-driving forces and the African superswell. Nature 395, 269-272.
  • Lovell, B., 2010. A pulse in the planet: regional control of high-frequency changes in relative sea level by mantle convection. Journal of the Geological Society, London 167, 637-648.
  • Loyd, S.J., Becker, T.W., Conrad, C.P., Lithgow-Bertelloni, C. & Corsetti, F.A., 2007. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution. Proceedings of the National Academy of Sciences 104, 14266-14271.
  • Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N. & Pekar, S.F., 2005. The Phanerozoic record of global ea-level change. Science 310, 1293-1298.
  • Mitrovica, J.X., Beaumont, C. & Jarvis, G.T., 1989. Tilting of continental interiors by the dynamical effects of subduction. Tectonics 8, 1079-1094.
  • Moucha, R., Forte, A.M., Mitrovica, J.X., Rowley, D.B., Quere, S., Simons, N.A. & Grand, S.P., 2008. Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth and Planetary Science Letters 271, 101-108.
  • Müller, R.D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C., 2008. Long-term sea-level fluctuations driv-fluctuations driven by ocean basin dynamics. Science 319, 1357-1362.
  • Murphy, J.B., Nance, R.D. & Cawood, P.A., 2009. Contrasting modes of supercontinent formation and the conundrum of Pangea. Gondwana Research 15, 408-420.
  • Onishi, C. & Kimura, G., 1995. Change in fabric of melange in the Shimanto Belt, Japan: change in relative convergence? Tectonics 14, 1273-1289.
  • Parsons, B. & Sclater, J.G., 1977. An analysis of the variation of the ocean floor bathymetry and heat flow with age. Journal of Geophysical Research 82, 803-827.
  • Phillips, B.R. & Coltice, N., 2010. Temperature beneath continents as a function of continental cover and convective wavelength. Journal of Geophysical Research 115, B04408.
  • Pitman, W.C., 1978. Relationship between eustasy and stratigraphic sequences of passive margins. Geological Society of America Bulletin 89, 1389-1403.
  • Rowley, D.B., 2008. Extrapolating oceanic age distributions: lessons from the Pacific region. Journal of Geology 116, 587-598.
  • Ruban, D.A., 2009. Novye predstavlenija o global'noj tektonike, evstatitcheskikh kolebanijakh i oledenenii v kamennougol'nom periode kak faktorakh floristitcheskoj evoljutsii [New ideas on global tectonics, eustatic fluctuations and glaciation during the Carboniferous period as factors of the floristic evolution]. [In:] M.V. Durante, I.A. Ignatiev. & Yu.V. Mosseichik (Eds): Iskopaemye rastenija i stratigrafija pozdnego paleozoja Angaridy i sopredel'nykh territorij [Fossil plants and stratigraphy of the Late Palaeozoic of Angarida and the neighbour territory]. GEOS, Moskva, p. 13. (in Russian)
  • Ruban, D.A. (in press). Do new reconstructions clarify the relationships between the Phanerozoic diversity dynamics of marine invertebrates and long-term eustatic trends? Annales de Paléontologie.
  • Ruban, D.A., Al-Husseini, M.I. & Iwasaki, Y., 2007. Review of Middle East Paleozoic plate tectonics. GeoArabia 12, 35-56.
  • Ruban, D.A., Zorina, S.O. & Conrad, C.P., 2010. No global-scale transgressive-regressive cycles in the Thanetian (Paleocene): evidence from interregional correlation. Palaeogeography, Palaeoclimatology, Palaeoecology 295: 226-235.
  • Safonova, I.Yu., 2009. Intraplate magmatism and oceanic plate stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma. Ore Geology Reviews 35, 137-154.
  • Schellart, W.P., Lister G.S. & Toy, V.G., 2006. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth-Science Reviews 76, 191-233.
  • Scotese, C.R., 2004. A continental drift flipbook. Journal of Geology 112, 729-741.
  • Scotese, C.R., Nokleberg, W.J., Monger, J.W.H., Norton, I.O., Parfenov, L.M., Bundtzen, T.K., Dawson, K.M., Eremin, R.A., Frolov, Y.F., Fujita, K., Goryachev, N.A., Khanchuk, A.I., Pozdeev, A.I., Ratkin, V.V., Rodinov, S.M., Rozenblum, I.S., Scholl, D.W., Shpikerman, V.I., Sidorov, A.A. & Stone, D.B., 2001. Dynamic computer model for the metallogenesis and tectonics of the circum-north Pacific. United States Geological Survey Open-File Report 01-261, 7 pp.
  • Silver, P.G. & Behn, M. D., 2008. Intermittent plate tecton-tectonics? Science 319, 85-88.
  • Smith, A.D., 2003. A re-appraisal of stress field and convective roll models for the origin and distribution of Cretaceous to Recent intraplate volcanism in the Pacific basin. International Geology Review 45, 287-302.
  • Spasojević, S. & Clayton, R.W., 2008. Crustal structure and apparent tectonic underplating from receiver function analysis in South Island, New Zealand. Journal of Geophysical Research 113, B04307, doi:10.1029/2007JB005166.
  • Spasojević, S., Liu, L. & Gurnis, M., 2009. Adjoint models of mantle convection with seismic, plate motion and stratigraphic constraints: North America since the Late Cretaceous. Geochemistry, Geophysics, Geosystems 10, Q05W02, doi:10.1029/2008GC002345.
  • Stampfli, G.M. & Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196, 17-33.
  • Stein, C.A. & Stein, S., 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123-129.
  • Stüwe, K., 2007. Geodynamics of the lithosphere: an introduction. Springer, Berlin, 493 pp.
  • Torsvik, T.H. & Cocks, L.R.M., 2004. Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review. Journal of the Geological Society, London 161, 555-572.
  • Torsvik, T.H., Steinberger, B., Cocks, L.R.M., Burke, K., 2008. Longitude: linking Earth's ancient surface to its deep interior. Earth and Planetary Science Letters 276, 273-282.
  • Torsvik, T.H., Steinberger, B., Gurnis, M., Gaina, C., 2010. Plate tecotnics and net lithosphere rotation over the challenge of reconstructing the Phanerozoic sea level and the Pacific Basin tectonics past 150 My. Earth and Planetary Science Letters 291, 106-112.
  • Vaughan, A.P.M. & Pankhurst, R.J., 2008. Tectonic overview of the West Gondwanan margin. Gondwana Research 13, 150-162.
  • Whittaker, J.M., Müller, R.D., Leitchenkov, G., Stagg, H., Sdrolias, M., Gaina, C. & Goncharov, A., 2007. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor Bend time. Science 318, 83-86.
  • Xu, X., Lithgow-Bertelloni, C. & Conrad, C.P., 2006. Global reconstructions of Cenozoic seafloor ages: implications for bathymetry and sea level. Earth and Planetary Science Letters 243, 552-564.
  • Zhang, N., Zhong, S., Leng, W. & Li, Z.-X., 2010. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. Journal of Geophysical Research 115, B06401, doi:10.1029/2009JB006896.
  • Zhong, S., Zhang, N., Li, Z.H. & Roberts, J.H., 2007. Supercontinent cycles, true polar wander, and very long wavelength mantle convection. Earth and Planetary Science Letters 261, 551-564.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-531c8356-d658-436c-b9ea-4690b4094235
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.