PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Facilities and problems of processing organic wastes by family-type biogas plants in Ukraine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The potential of organic wastes in Ukraine for biogas production and the prospects of using the family-type biogas plants for this purpose are shown. In the biogas laboratory of the Ukrainian National Forestry University the efficiency of the anaerobic mesophilic digestion of chicken manure of Poltava poultry farm, Kamianets-Podilsky poultry farm and sewage sludge from Lviv wastewater treatment plant (WWTP) was investigated. Different integral indicators of the biogas production and significantly different dynamics of its formation over time were obtained for three investigated substrates. The value of average specific biogas production from the sewage sludge of Lviv WWTP is 0.494 dm3∙(day∙kg FM)–1, which is 5.1 times more comparing the chicken manure of Kamianets-Podilsky poultry farm and 8.0 times more than for the chicken manure of Poltava poultry farm. Strong negative effect of antibiotic treatment of chickens on methane content in the obtained biogas was established experimentally.
Wydawca
Rocznik
Tom
Strony
185--189
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Ukrainian National Forestry University, Institute of Woodworking, Computer Technology and Design, Department of Technology of Furniture and Wooden Products, Lviv, Ukraine
  • Lviv Polytechnic National University, Viacheslav Chornovil Institute of Sustainable Development, Department of Ecology and Sustainable Environmental Management, Lviv, Ukraine
  • Lviv Polytechnic National University, Institute of Civil Engineering and Building Systems, Department of Hydraulic and Water Engineering, Lviv, Ukraine
autor
  • Lviv Polytechnic National University, Viacheslav Chornovil Institute of Sustainable Development, Department of Ecology and Sustainable Environmental Management, Lviv, Ukraine
Bibliografia
  • ACHINAS S., ACHINAS V.,WILLEM EUVERINK G.J. 2017. A technological overview of biogas production from biowaste. Engineering. Vol. 3 (3) p. 299−307. DOI 10.1016/J.ENG.2017.03. 002.
  • ACHINAS S., WILLEM EUVERINK G.J. 2020. Rambling facets of manure-based biogas production in Europe: A briefing. Renewable and Sustainable Energy Reviews. Vol. 119, 109566. DOI 10.1016/j.rser.2019.109566.
  • Anaerobic Digestion of Animal Manure in Eastern Countries. 1994. European Commission Directorate General for Energy DGXVII. Thermic programme action BM20, Rheinland Mar-ket Study. 7 pp. 201.
  • ANGELIDAKI I., ELLEGAARD L. 2003. Codigestion of manure and organic wastes in centralized biogas plants. Applied Biochemistry and Biotechnology. Vol. 109 p. 95–105. DOI 10.1385/ABAB:109:1-3:95.
  • BATSTONE D.J., VIRDIS B. 2014. The role of anaerobic digestion in the emerging energy economy. Current Opinion in Biotechnology. Vol. 27 p. 142−149. DOI 10.1016/j.copbio.2014. 01.013.
  • BUDZIANOWSKI W.M. 2012. Sustainable biogas energy in Poland: Prospects and challenges. Renewable and Sustainable Energy Reviews. Vol.16 (1) p. 342−349. DOI 10.1016/j.rser.2011. 07.161.
  • CASTILLO M.E.F., CRISTANCHO D.E., ARELLANO A.V. 2006. Study of the operational conditions for anaerobic digestion of urban solid wastes. Waste Management. Vol. 26 (5) p. 546−556. DOI 10.1016/j.wasman.2005.06.003.
  • CZEKAŁA W., GAWRYCH K., SMURZYŃSKA A., MAZURKIEWICZ J., PAWLISIAK A., CHEŁKOWSKI D., BRZOSKI M. 2017. The possibility of functioning micro-scale biogas plant in selected farm. Journal of Water and Land Development. No. 35 p. 19–25. DOI 10.1515/jwld-2017-0064.
  • DONG X.T., CHEN W., LI J.Q., ZHANG S. 2018. Research on biogas fermentation raw materials. E3S Web of Conferences. 53, 01030 p. 1−5.
  • ENITAN A. M., ADEYEMO J., SWALAHA F. M., KUMARI S., BUX F. 2017. Optimization of biogas generation using anaerobic digestion models and computational intelligence approaches. Reviews in Chemical Engineering. Vol. 33(3) p. 309−335. DOI 10.1515/revce-2015-0057.
  • FANTOZZI F., BURATTI C. 2009. Biogas production from different substrates in an experimental Continuously Stirred Tank Reactor anaerobic digester. Bioresource Technology. Vol. 100 (23) p. 5783−5789. DOI 10.1016/j.biortech.2009.06.013.
  • HILKIAH IGONI A., AYOTAMUNO M.J., EZE C.L., OGAJI S.O.T., PROBERT S.D. 2008. Designs of anaerobic digesters for producing biogas from municipal solid-waste. Applied Energy. Vol. 85 (6) p. 430−438. DOI 10.1016/j.apenergy.2007. 07.013.
  • KUSHKEVYCH I., VÍTĚZOVÁ M., VÍTĚZ T., KOVÁČ J., KAUCKÁ P., JESIONEK W., BARTOŠ M., BARTON L. 2018. A new combination of substrates: biogas production and diversity of the methanogenic microorganisms. Open Life Sciences. Vol. 13 (1) p. 119−128. DOI 10.1515/biol-2018-0017.
  • LI Y., RUIHONG Z., CHANG C., LIU G., HE Y., LIU X. 2013. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresource Technology. Vol. 149 p. 406−412. DOI 10.1016/j.biortech.2013.09.091.
  • LINKE B. 2006. Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass and Bioenergy. Vol. 30 (10) p. 892−896. DOI 10.1016/j.biombioe. 2006.02.001.
  • Lviv wastewater biogas – feasibility study update. EBRD contract number: C29880/SWUK-2014-09-04. Funded by Sida-EBRD Ukraine Energy Efficiency and Environment Consult-ant Cooperation Fund. 2014. ABANOR AB pp. 98.
  • MYCZKO A., SAWIŃSKI R., WRZESIŃSKA-JĘDRUSIAK E., ALESZCZYK Ł., ŁASKA-ZIEJA B. 2019. Prosumenckie instalacje biogazowe do sanitacji gnojowicy oraz pozostałości poprodukcyjnych z przetwórstwa rolniczego [Prosumer biogas installations for the sanitation of slurry and post-production residues from agricultural]. Woda-Środowisko-Obszary Wiejskie. T. 19. Z. 1 (65) p. 19–36.
  • PUCHAJDA B., OLESZKIEWICZ J. 2008. Impact of sludge thickening on energy recovery from anaerobic digestion. Water Science and Technology. Vol. 57 (3) p. 395–401. DOI 10.2166/wst. 2008.021.
  • ROSS C.C., DRAKE T.J., WALSH J.L. 1996. Handbook of biogas utilization. 2nd ed. Atlanta, U.S. Department of Energy pp. 188.
  • SCARLAT N., FAHL F., DALLEMAND J.-F., MONFORTI F., MOTOLA V. 2018. A spatial analysis of biogas potential from manure in Europe. Renewable and Sustainable Energy Reviews. Vol. 94 p. 915–930. DOI 10.1016/j.rser.2018.06.035.
  • ZHANG W., WU S., GUO J., ZHOU J., DONG R. 2015. Performance and kinetic evaluation of semi-continuously fed anaerobic digesters treating food waste: Role of trace elements. Bioresource Technology. Vol. 178 p. 297−305. DOI 10.1016/ j.biortech.2014.08.046.
  • ZHUK V.M., POPADIUK I.Y., VERBOVSKIY O.V. 2015. Analiz dosvidu anaerobnoho zbrodzhuvannia osadiv stichnykhvod u konteksti yoho zastosuvannia na Lvivskykh kanalizatsiinykh ochysnykh sporudakh [Analysis of the experience of anaerobic digestion of sewage sludge in the context of its application at Lviv wastewater treatment plants]. Scientific Bulletin of UNFU. Vol. 25 (10) p. 162−165.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53178ea2-c2ca-4c76-84ec-2f036511491e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.