PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soil conditions under great cormorant and grey heron colonies in a wetland : Effect on soil nematode abundance and trophic structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to investigate how great cormorants and grey herons affect the density and trophic diversity of soil nematodes under breeding colonies located in Stawy Raszyńskie Nature Reserve (central Poland). Soil samples from the colonies were compared to control samples from adjacent areas unaffected by birds. Samples were taken at each site (two colonies and two relevant control sites) to a depth of 20 cm, and the soil cores were split into topsoil (0-10 cm) and subsoil (10-20 cm). A modified Baermann method was used to extract nematodes from the soil. The soil under nests supported more abundant nematode communities, but with a lower trophic diversity compared to the control sites. The cormorants had a greater impact on nematodes than the herons. We found that the external nitrogen input, the higher organic matter content and abundance of ammonifying bacteria, as well as the lower soil pH under the colonies than in the control sites, affected the nematode trophic groups in different ways. Compared to the control sites, there were significantly more bacterivorous nematodes but fewer herbivorous nematodes under the colonies. No predatory nematodes were found under the bird colonies and, in the case of the cormorant colony, no omnivorous nematodes. No significant differences in the abundance of fungivorous nematodes between the impact and the control plots were noticed. The results indicate that allochthonous input under bird colonies promotes microbial activity and the most opportunistic trophic group of nematodes, which may at least temporarily enhance decomposition and mineralisation processes and consequently affect nutrient cycling in the wetland soil.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
79--88
Opis fizyczny
Bibliogr. 78 poz., fot., tab., wykr.
Twórcy
  • The National Institute of Horticultural Research, Department of Plant Protection, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • Cardinal Stefan Wyszynski University in Warsaw, Institute of Biological Sciences, Warsaw, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
  • Cardinal Stefan Wyszynski University in Warsaw, Institute of Biological Sciences, Warsaw, Poland
Bibliografia
  • Anderson, W.B. and Polis, G.A. (1999) “Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California Islands,” Oecologia, 118, pp. 324–332. Available at: https://doi.org/10.1007/s004420050733.
  • Andrássy, I. (2005) Free-living nematodes of Hungary: Nematoda errantia, vol. 1. Budapest: Hungarian Natural History Museum.
  • Andrássy, I. (2007) Free-living nematodes of Hungary: Nematoda errantia, vol. 2. Budapest: Hungarian Natural History Museum.
  • Andrássy, I. (2009) Free-living nematodes of Hungary: Nematoda errantia, vol. 3. Budapest: Hungarian Natural History Museum.
  • Andriuzzi, W.S. et al. (2013) “Soil nematode assemblage responds weakly to grazer exclusion on a nutrient-rich seabird island,” European Journal of Soil Biology, 58, pp. 38–41. Available at: https://doi.org/10.1016/j.ejsobi.2013.05.009.
  • Baldock, J.A. and Nelson, P.N. (2000) “Soil organic matter,” in Recommended chemical soil test procedures for the North Central Region. Boca Raton: CRC Press, pp. 53–58.
  • Bezooijen van, J. (2006) Methods and techniques for nematology. Wageningen: Wageningen University.
  • Bongers, T. (1988) De nematoden van Nederland. Een identificatietabel voor de in Nederland aangetroffenen zoetwater – en bodembewo-nende nematoden [The nematodes of the Netherlands. An identification table for freshwater and soil nematodes found in the Netherlands]. Utrecht: Koninklijke nederlandse natuurhistorische vereniging.
  • Bongers, T. (1990) “The maturity index: An ecological measure of environmental disturbance based on nematode species composition,” Oecologia, 83, pp. 14–19. Available at: https://doi.org/10.1007/BF00324627.
  • Bongers, T. (1999) “The maturity index, the evolution of nematode life history traits, adaptive radiation and cp-scaling,” Plant and Soil, 212, pp. 13–22. Available at: https://doi.org/10.1023/A:1004571900425.
  • Bukaciński, D. and Bukacińska, M. (1991) “Awifauna stawów rybnych w Raszynie w latach 1977–1986 [Avifauna of fish ponds in Raszyn in the years 1977–1986],” Notatki Ornitologiczne, 32(3–4), pp. 89–116.
  • Byzova, J., Uvarov, A. and Petrova, A. (1995) “Seasonal changes in communities of soil invertebrates in tundra ecosystems of Hornsund Spitsbergen,” Polish Polar Research, 16, pp. 245–266.
  • Callaham, M.A., Butt, K.R. and Lowe, C.N. (2012) “Stable isotope evidence for marine-derived avian inputs of nitrogen into soil, vegetation, and earthworms on the isle of Rum, Scotland, UK,” European Journal of Soil Biology, 52, pp. 78–83. Available at: https://doi.org/10.1016/j.ejsobi.2012.07.004.
  • Dmowska, E. and Ilieva-Makulec, K. (2004) “Past and present status of nematode community indicators,” in R. Cook and D. Hunt (eds.) Proceedings of the Fourth International Congress of Nematology Nematology Monographs & Perspectives, 2, pp. 487–501. Available at: https://doi.org/10.1163/9789004475236_049.
  • Domínguez, M.T. et al. (2017) “Impacts of protected colonial birds on soil microbial communities: When protection leads to degradation,” Soil Biology and Biochemistry, 105, pp. 59–70. Available at: https://doi.org/10.1016/j.soilbio.2016.11.007.
  • Eerden van, M. (1995) “Long-term changes in the northwest European population of cormorants (Phalacrocorax carbo sinensis),” Ardea, 83, pp. 61–79.
  • Eerden van, M. et al. (2012) Cormorants and the European environment: Exploring cormorant status and distribution on a continental scale. Cost Action 635. Final Report, I. Brussels: COST Office.
  • Ekschmitt, K. and Korthals, G.W. (2006) “Nematodes as sentinels of heavy metals and organic toxicants in the soil,” Journal of Nematology, 38, pp. 13–19.
  • Ellis, J.C. (2005) “Marine birds on land: A review of plant biomass, species richness, and community composition in seabird colonies,” Plant Ecology, 181, pp. 227–241. Available at: https://doi.org/10.1007/s11258-005-7147-y.
  • Ellis, J.C., Fariña, J.M. and Witman, J.D. (2006) “Nutrient transfer from sea to land: the case of gulls and cormorants in the gulf of Maine,” Journal of Animal Ecology, 75, pp. 565–574. Available at: https://doi.org/10.1111/j.1365-2656.2006.01077.x.
  • Ferris, H., Bongers, T. and Goede de, R.G.M. (2001) “A framework for soil food web diagnostics: extension of the nematode faunal analysis concept,” Applied Soil Ecology, 18, pp. 13–29. Available at: https://doi.org/10.1016/S0929-1393(01)00152-4.
  • Freckman, D.W. (1988) “Bacterivorous nematodes and organic-matter decomposition,” Agriculture, Ecosystems & Environment, 24, pp. 195–217. Available at: https://doi.org/10.1016/0167-8809(88)90066-7.
  • García, L.V. et al. (2011) “Protected wading bird species threaten relict centenarian cork oaks in a Mediterranean Biosphere Reserve: A conservation management conflict,” Biological Conservation, 144, pp. 764–771. Available at: https://doi.org/10.1016/j.biocon.2010.11.007.
  • Gregory, R.D., Gibbons, D.W. and Donald, P.F. (2004) “Bird census and survey techniques,” in W.J. Sutherland, I. Newton and R. Green, (eds.) Bird ecology and conservation: A handbook of techniques. Oxford University Press, pp. 17–40. Available at: https://doi.org/10.1093/acprof:oso/9780198520863.003.0002.
  • Grochalski, P. and Bednarz, B. (2019) “Wpływ kolonii lęgowej kormorana czarnego (Phalacrocorax carbo) na przyrost radialny sosny zwyczajnej (Pinus silverstris) w rezerwacie przyrody Kąty Rybackie [The impact of breeding cormorants’ colonies (Phalacrocorax carbo L.) on radial increments of Scotch pine (Pinus sylvestris L.) in Kąty Rybackie nature reserve],” Acta Scientiarum Polonorum, Ser. Silvarum Colendarum Ratio et Industria Lignaria, 18, pp. 23–30. Available at: https://doi.org/10.17306/J.AFW.2019.1.3.
  • Gwiazda, R. et al. (2015) “Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir,” Oceanological and Hydrobiological Studies, 43(4), pp. 418–426. Available at: https://doi.org/10.2478/s13545-014-0160-9.
  • Hahn, S., Bauer, S. and Klaassen, M. (2007) “Estimating the contribution of carnivorous waterbirds to nutrient loading in freshwater habitats,” Freshwater Biology, 52, pp. 2421–2433. Available at: https://doi.org/10.1111/j.1365-2427.2007.01838.x.
  • Harrow, G., Hawke, D.J. and Holdaway, R.N. (2006) “Surface soil chemistry at an alpine procellariid breeding colony in New Zealand, and comparison with a lowland site,” New Zealand Journal of Zoology, 33, pp. 165–174. Available at: https://doi.org/10.1080/03014223.2006.9518441.
  • Hobara, S. et al. (2005) “Nitrogen and phosphorus enrichment and balance in forests colonized by cormorants: Implications of the influence of soil adsorption,” Plant and Soil, 268, pp. 89–101. Available at: https://doi.org/10.1007/s11104-004-0231-6.
  • Hunt, H.W. and Wall, D.H. (2002) “Modelling the effects of loss of soil biodiversity on ecosystem function,” Global Change Biology, 8, pp. 33–50. Available at: https://doi.org/10.1046/j.1365-2486.2002.00425.x.
  • Ilieva-Makulec, K., Bjarnadottir, B. and Sigurdsson, B.D. (2015) “Soil nematode communities on Surtsey, 50 years after the formation of the volcanic island,” Icelandic Agricultural Sciences, 28, pp. 43–58. Available at: http://dx.doi.org/10.16886/IAS.2015.05.
  • Ilieva-Makulec, K., Kozacki, D. and Makulec, G. (2016) “The impact of roosting birds on the abundance of two groups of soil mesofauna,” Studia Ecologiae et Bioethicae, 13, pp. 117–133.
  • Ilieva-Makulec, K., Kozacki, D., Makulec, G. (2018) “Corvid roosts in the city: First results about their impact on the taxonomic diversity and trophic structure of the soil nematode community,” Acta Zoologica Bulgarica, Suppl. 12, pp. 11–19.
  • Irick, D.L. et al. (2015) “Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades,” Science of The Total Environment, 532, pp. 40–47. Available at: https://doi.org/10.1016/j.scitotenv.2015.05.097.
  • Ishida, A. (1996) “Effects of the common cormorant, Phalacrocorax carbo, on evergreen forests in two nest sites at Lake Biwa, Japan,” Ecological Research, 11, pp. 193–200. Available at: https://doi.org/10.1007/BF02347685.
  • Klimaszyk, P. et al. (2015) “Black spots for aquatic and terrestrial ecosystems: Impact of a perennial cormorant colony on the environment,” Science of The Total Environment, 517, pp. 222–231. Available at: https://doi.org/10.1016/j.scitotenv.2015.02.067.
  • Klimaszyk, P., Piotrowicz, R. and Rzymski, P. (2014) “Changes in physico-chemical conditions and macrophyte abundance in a shallow soft-water lake mediated by a Great Cormorant roosting colony,” Journal of Limnology, 73. Available at: http://dx.doi.org/10.4081/jlimnol.2014.994.
  • Klimaszyk, P. and Rzymski, P. (2016) “The complexity of ecological impacts induced by great cormorants,” Hydrobiologia, 771, pp. 13–30. Available at: https://doi.org/10.1007/s10750-015-2618-1.
  • Kolb, G.S. et al. (2012) “The impact of nesting cormorants on plant and arthropod diversity,” Ecography, 35, pp. 726–740. Available at: https://doi.org/10.1111/j.1600-0587.2011.06808.x.
  • Korthals, G.W. et al. (1996) “Short-term effects of cadmium, copper, nickel and zinc on soil nematodes from different feeding and life-history strategy groups,” Applied Soil Ecology, 4, pp. 107–117. Available at: https://doi.org/10.1016/0929-1393(96)00113-8.
  • Lebedeva, N. (1997) “Accumulation of heavy metals by birds in the southwest of Russia,” Russian Journal of Ecology, 28, pp. 41–46.
  • Leeuwen van, C.H.A. et al. (2017) “Great cormorants reveal overlooked secondary dispersal of plants and invertebrates by piscivorous waterbirds,” Biology Letters, 13, 20170406. Available at: https://doi.org/10.1098/rsbl.2017.0406.
  • Ligęza, S. (2009) “Zagrożenie gleb na fermach gęsi związkami azotu i fosforu [Nitrogen and phosphorus in soil and soil solutions on the area of goose farms],” Zeszyty Problemowe Postępów Nauk Rolniczych, 535, pp. 261–268.
  • Ligęza, S. and Misztal, M. (1999) “Zmiany właściwości gleb na obszarze noclegowiska gawronów [The changes in soil properties on the area of the rooks roosting place],” Zeszyty Problemowe Postępów Nauk Rolniczych, 467(2), pp. 379–385.
  • Ligęza, S. and Misztal, M. (2000) “Zbiorowiska ptaków jako czynnik modyfikujący środowisko przyrodnicze [Bird communities as a factor modifying the natural environment],” in S. Radwan and Z. Lorkiewicz (eds.) Problemy ochrony i użytkowania obszarów wiejskich o dużych walorach przyrodniczych [Problems of protection and use of rural areas with high natural values]. Lublin: Wydaw. Uniwersytetu Marii Skłodowskiej-Curie, pp. 293–300.
  • Ligęza, S. and Smal, H. (2003) “Accumulation of nutrients in soils affected by perennial colonies of piscivorous birds with reference to biogeochemical cycles of elements,” Chemosphere, 52, pp. 595–602. Available at: https://doi.org/10.1016/S0045-6535(03)00241-8.
  • Manikowska-Ślepowrońska, B., Szydzik, B. and Jakubas, D. (2016) “Determinants of the presence of conflict bird and mammal species at pond fisheries in western Poland,” Aquatic Ecology, 50, pp. 87–95. Available at: https://doi.org/10.1007/s10452-015-9554-z.
  • Mulder, C.P.H. et al. (2011) Seabird islands: Ecology, invasion, and restoration. Oxford: Oxford University Press.
  • Osono, T. et al. (2002) “Abundance, diversity, and species composition of fungal communities in a temperate forest affected by excreta of the Great cormorant Phalacrocorax carbo,” Soil Biology and Biochemistry, 34, pp. 1537–1547. Available at: https://doi.org/10.1016/S0038-0717(02)00123-2.
  • Oszust, M. and Klimaszyk, P. (2022) “Soil conditions under cormorant colonies favor for mites excepting Oribatida,” Acarologia, 62, pp. 974–988. Available at: https://doi.org/10.24349/u9ke-eqk9.
  • Otchere-Boateng, J.K. (1979) “Reaction of nitrogen fertilizers in forest soils,” Proceedings. Forest Fertilization Conference, 40, pp. 37–47.
  • Paoletti, M.G. et al. (1991) “Invertebrates as bioindicators of soil use,” Agriculture, Ecosystems & Environment, 34, pp. 341–362. Available at: https://doi.org/10.1016/0167-8809(91)90120-M.
  • Pen-Mouratov, S. and Dayan, T. (2019) “Effect of piscivorous and omnivorous colonial birds: activity on structure, abundance and diversity of soil free-living nematodes. Preliminary results from a study of the impact of avifauna on soil biota in Israel’s Mediterranean Coastal Plain,” Ecological Indicators, 108, pp. 1–12. Available at: https://doi.org/10.1016/j.ecolind.2019.02.053.
  • PN-C-04615.05:1975. Woda i ścieki – badania mikrobiologiczne – oznaczanie bakterii grupy coli metodą fermentacyjną probówkową [Water and sewage – Microbiological tests – Determination of E. coli bacteria by fermentation tube method]. Warszawa: Polski Komitet Normalizacji i Miar.
  • R Development Core T (2018) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Scherer, N.M. et al. (1995) “Phosphorus loading of an urban lake by bird droppings,” Lake and Reservoir Management, 11, pp. 317–327. Available at: https://doi.org/10.1080/07438149509354213.
  • Schlegel, H.G., Markiewicz, Z. and Baj, J. (2008) Mikrobiologia ogólna [General microbiology]. Warszawa: Wydawnictwo Naukowe PWN.
  • Southey, J.F. (1986) “Laboratory methods for work with plant and soil nematodes,” Reference book – Ministry of Agriculture, Fisheries and Food, 402. London: H.M. Stationery Office.
  • Teixeira, L.C.R.S. et al. (2013) “Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica,” Plos ONE, 8(6), e66109. Available at: https://doi.org/10.1371/journal.pone.0066109.
  • Tomiałojć, L. and Stawarczyk, T. 2003. Awifauna Polski: rozmieszczenie, liczebność i zmiany [Birds of Poland: distribution, abundance and changes]. Wrocław: Pro Natura.
  • Towns, D.R. et al. (2009) “Predation of seabirds by invasive rats: multiple indirect consequences for invertebrate communities,” Oikos, 118, pp. 420–430. Available at: https://doi.org/10.1111/j.1600-0706.2008.17186.x.
  • Trett, M.W., Urbano, B.C. and Forster, S. (2009) “Commercial aspects of the use of nematodes as bioindicators,” in M. J. Wilson, T. Kakouli-Duarte (eds.) Nematodes as environmental indicators. Wallingford: CABI, pp. 275–314. Available at: https://doi.org/10.1079/9781845933852.0275.
  • Walczuk, T. and Romanowski, J. (2013) “Przyrodnicze i ekonomiczne uwarunkowania gospodarki stawowej w rezerwacie ornitologicznym Stawy Raszyńskie [Natural and economic conditions of fish farming in ornithological nature reserve »Stawy Raszyńskie«,” Woda-Środowisko-Obszary Wiejskie, 13, 4(44), pp. 175–184.
  • Wasilewska, L. (1974) “Rola wskaźnikowa wszystkożernej grupy nicieni glebowych [The role of the omnivorous grup of soil nematodes as ecological indicators]”. Wiadomości Ekologiczne, 20, pp. 385–390.
  • Wasilewska, L. (1995) “Nicienie glebowe jako wskaźniki procesów ekologicznych [Soil nematodes as indicators of ecological processes],” Przegląd Zoologiczny, 39, pp. 203–211.
  • Wasilewska, L. (1997) “Soil invertebrates as bioindicators, with special reference to soil-inhabiting nematodes,” Russian Journal of Nematology, 5, pp. 113–126.
  • Wasilewska, L. (1999) “Wykorzystanie znajomości ekologii nicieni glebowych dla ocen odkształcenia i degradacji środowiska naturalnego [Soil nematode ecology for assessments of environmental deformation and degradation],” Parki Narodowe i Rezerwaty Przyrody, 18, pp. 19–27.
  • Wilson, M.J. and Kakouli-Duarte, T. (eds.) (2009) Nematodes as environmental indicators. Wallingford: CABI.
  • Wright, D.G. et al. (2010) “The influence of seabird nutrient enrichment and grazing on the structure and function of Island soil food webs,” Soil Biology and Biochemistry, 42, pp. 592–600. Available at: https://doi.org/10.1016/j.soilbio.2009.12.008.
  • Yeates, G.W. (2003) “Nematodes as soil indicators: functional and biodiversity aspects,” Biology and Fertility of Soils, 37, pp. 199–210. Available at: https://doi.org/10.1007/s00374-003-0586-5.
  • Yeates, G.W. et al. (1993) “Feeding habits in soil nematode families and genera – an outline for soil ecologists,” Journal of Nematology, 25, pp. 315–331.
  • Young, H.S., Hurrey, L. and Kolb, G.S. (2011) “Effects of seabird- derived nutrients on aquatic systems,” in C.P.H. Mulder et al. (eds.) Seabird islands: Ecology, invasion, and restoration. Oxford University Press. Available at: https://doi.org/10.1093/acprof:osobl/9780199735693.003.0008.
  • Zhao, J. and Neher, D.A. (2013) “Soil nematode genera that predict specific types of disturbance,” Applied Soil Ecology, 64, pp. 135–141. Available at: https://doi.org/10.1016/j.apsoil.2012.11.008.
  • Ziółek, M., Bartmiński, P. and Stach, A. (2017) “The influence of seabirds on the concentration of selected heavy metals in organic soil on the Bellsund Coast, Western Spitsbergen,” Arctic, Antarctic, and Alpine Research, 49, pp. 507–520. Available at: https://doi.org/10.1657/AAAR0016-024.
  • Ziółek, M. and Melke, J. (2014) “The impact of seabirds on the content of various forms of phosphorus in organic soils of the Bellsund coast, western Spitsbergen,” Polar Research, 33, pp. 1–12. Available at: https://doi.org/10.3402/polar.v33.19986.
  • Zmudczyńska, K. et al. (2012) “Influence of allochtonous nutrients delivered by colonial seabirds on soil collembolan communities on Spitsbergen,” Polar Biology, 35, pp. 1233–1245. Available at: https://doi.org/10.1007/s00300-012-1169-4.
  • Żółkoś, K., Kukwa, M. and Afranowicz-Cieślak, R. (2013) “Changes in the epiphytic lichen biota in Scots pine (Pinus sylvestris) stands affected by a colony of grey heron (Ardea cinerea): A case study from northern Poland,” The Lichenologist, 45, pp. 815–823. Available at: https://doi.org/10.1017/S0024282913000558.
  • Zwolicki, A. et al. (2016) “Differential responses of arctic vegetation to nutrient enrichment by plankton- and fish-eating colonial seabirds in Spitsbergen,” Frontiers in Plant Science, 7, pp. 1–14. Available at: https://doi.org/10.3389/fpls.2016.01959.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53163531-4ec1-4abe-a344-912884262d49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.