Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present different extensions of the Banach contraction principle in the G-metric space setting. More precisely, we consider mappings for which the contractive condition is satisfied by a power of the mapping and for which the power depends on the specified point in the space. We first state the result in the continuous case and later, show that the continuity is indeed not necessary. Imitating some techniques obtained in the metric case, we prove that under certain conditions, it is enough for the contractive condition to be verified on a proper subset of the space under consideration. These results generalize well known comparable results.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
55--70
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Institut de Mathématiques et de Sciences Physiques (IMSP) 01 BP 613 Porto-Novo, Bénin and African Center for Advanced Studies (ACAS) P.O. Box 4477, Yaounde, Cameroon
Bibliografia
- [1] Aydi H., Shatanawi W., Postolache M., Coupled fixed point results for (ψ, ϕ) - weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl., 63(2012), 298-309.
- [2] Aydi H., Shatanawi W., Vetro C., On generalized weakly G-contraction mapping in G-metric spaces, Comput. Math. Appl., 62(2011), 4222-4229.
- [3] Aydi A., Damjanovic B., Samet B., Shatanawi W., Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Mathematical and Computer Modelling, 54(2011) 2443-2450.
- [4] Ćirić L.B., A generalization of Banach’s contraction principle, Proc. Am. Math. Soc., 45(1974), 267-273.
- [5] Bryant V., A remark on a fixed point theorem for iterated mappings, Am. Math. Mon., 75(1968), 399-400.
- [6] Gaba Y.U., Fixed points of rational type contractions in G-metric spaces, Cogent Mathematics & Statistics, 5(1)(2018).
- [7] Gaba Y.U., Common fixed points in G-metric type spaces via ⅄-sequences, Journal of Mathematics, Volume 2017, Article ID 6018054, 7 pages.
- [8] Gaba Y.U., Fixed point theorems in G-metric spaces, Journal of Mathematical Analysis and Applications, 455(1)(2017), 528-537.
- [9] Gajić L.J., Lozanov-Crvenković Z., A fixed point result for mappings with contractive iterate at a point in G-metric spaces, Filomat, 25(2)(2011), 53-58.
- [10] Jachymski J.R., Equivalence of some contractivity properties over metrical structure, Proc. Am. Math. Soc., 125(1997), 2327-2335.
- [11] Mustafa Z., A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. thesis, The University of Newcastle, Australia (2005).
- [12] Mustafa Z., Aydi H., Karapinar E., Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric spaces, Fixed Point Theory and Applications, 2012, 71(2012).
- [13] Mustafa Z., Sims B., A new approach to generalized metric spaces, Journal of Nonlinear Convex Analysis, 7(2006), 289-297.
- [14] Rhoades B.E., A comparison of various definitions of contractive mappings, Proc. Am. Math. Soc., 226(1977), 257-290.
- [15] Shirali S., Maps for which some power is a contraction, Math. Communi., 15(1)(2010), 139-141.
- [16] Tahat N., Aydi H., Karapinar E., Shatanawi W., Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl. 2012, 48(2012).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-531281d5-4554-447c-9c76-83a300f1eee8