PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the impact of incremental technology on mechanical and tribological properties of biomaterials

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie wpływu technologii przyrostowej na właściwości mechaniczne biomateriałów
Języki publikacji
EN
Abstrakty
EN
The latest method for creating denture replenishment in CAD / CAM systems is Direct Metal Laser Sintering (DMLS) technology. With the use of DMLS, prosthodontics, implant prosthetics, and facial-cranialjaw surgery adapted to individual patient conditions can be realized. The aim is to evaluate the strength, microstructure, and tribological properties of Ti6Al4V and CoCrMo alloys obtained from DMLS technology in the aspect of therapeutic constructions. The conducted tests show that, in the DMLS technology, as compared to milling technology preceded by casting and forging or pressed powder and sintering, for the same percentage composition of elements, the micromechanical properties, microstructural and tribological change. This procedure, from which constructions for various dental applications are obtained, is the new technology preferred for making permanent restorations faced with ceramics, producing intravascular implants, and implants of the temporomandibular joint. It can be an alternative to conventional cast-based methods and CAD / CAM based milling.
PL
Najnowszą metodą tworzenia uzupełnień stomatologicznych w systemie CAD/CAM jest technologia Direct Metal Laser Sintering (DMLS). Z wykorzystaniem DMLS można realizować wykonanie konstrukcji protetyki, implantoprotetyki oraz chirurgii twarzowo-czaszkowo-szczękowej dostosowanej do indywidualnych warunków pacjenta. Celem jest ocena parametrów wytrzymałościowych, mikrostruktury i właściwości tribologicznych stopów Ti6Al4V oraz CoCrMo uzyskanych w technologii DMLS w aspekcie zastosowania na konstrukcje terapeutyczne. Przeprowadzone badania wskazują, że w technologii DMLS, w porównaniu z technologią frezowania poprzedzoną procesami odlewania i kucia lub prasowania proszku i spiekania, dla tego samego składu procentowego pierwiastków, zmieniają się właściwości mikromechaniczne, mikrostrukturalne i tribologiczne. Procedura ta, w wyniku której uzyskuje się konstrukcje dla różnych aplikacji stomatologicznych – jest nową technologią preferowaną do wykonawstwa uzupełnień stałych licowanych ceramiką, do wytwarzania wszczepów śródkostnych oraz implantów stawu skroniowo-żuchwowego. Może ona stanowić alternatywę dla klasycznych metod opartych na odlewnictwie oraz metod CAD/CAM opartych na frezowaniu.
Czasopismo
Rocznik
Tom
Strony
29--38
Opis fizyczny
Bibliogr. 27 poz., rys., wykr., wz.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. Mickiewicza 30, 30-059 Cracow, Poland
autor
  • Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics, ul. Montelupich 4, 31-155 Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. Mickiewicza 30, 30-059 Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • 1. Ryniewicz A., Ryniewicz W.: The estimation of selected properties of titanium to performance of prosthetic restorations in CAD/CAM, Polish Journal of Enviromental Studies, 16, 6C(2007), 348–353.
  • 2. Rodrigues W.C., Broilo L.R., Schaeffer L., Knörnschild G., Espinoza F.R.M.: Powder metallurgical processing of Co–28% Cr–6% Mo for dental implants: Physical, mechanical and electrochemical properties, Powder Technology, 206, 3(2011), 233-238.
  • 3. España F.A., Balla V.K., Bose S., Bandyopadhyay A.: Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping, Materials Science and Engineering: C, 30, 1(2010), 50-57.
  • 4. Doni Z., Alves A.C., Toptan F., Gomes J.R., Ramalho A., Buciumeanu M., Palaghian L., Silva F.S.: Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys. Materials & Design, 52(2013), 47–57.
  • 5. Buciumeanu M., Araujo A., Carvalho O., Miranda G., Souza J.C.M., Silva F.S., Henriques B.: Study of the tribocorrosion behaviour of Ti6Al4V–HA biocomposites. Tribology International, 107(2017), 77–84.
  • 6. Chlebus E., Kuźnicka B., Kurzynowski T., Dybała B.: Microstructure and mechanical behaviour of Ti–6Al–7Nb alloy produced by selective laser melting, Materials Characterization, 62, 5(2011), 488–495, DOI:10.1016/j.matchar.2011.03.006.
  • 7. Rafi H.K., Karthik N.V., Gong H., Starr T.L. Stucker B.E.: Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, Journal of Materials Engineering and Performance, 22(2013), 3872–3883.
  • 8. Song B., Dong S., Zhang B., Liao H., Coddet C.: Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V, Mater. Design, 35(2012), 120–125.
  • 9. Vrancken B., Thijs L., Kruth J.P., Van Humbeeck J.: Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, Journal of Alloys and Compounds, 541(2012), 177–185.
  • 10. Takaichi A., Nakamoto T., Joko N., Nomura N., Tsutsumi Y., Migita S., Hanawa T.: Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications, Journal of the mechanical behavior of biomedical materials, 21 (2013), 67–76.
  • 11. Grądzka-Dahlke M., Dąbrowski J.R., Dąbrowski B.: Modification of mechanical properties of sintered implant materials on the base of Co–Cr–Mo alloy, Journal of materials processing technology, 204, 1(2008), 199–205.
  • 12. Toh W.Q., Sun Z., Tan X., Liu E., Tor S.B., Chua C.K.: Comparative Study on Tribological Behavior of Ti-6Al-4V and Co-Cr-Mo Samples Additively Manufactured with Electron Beam Melting. (2016).
  • 13. Martinez-Nogues V., Nesbitt J.M., Wood R.J.K., Cook R.B.: Nano-scale wear characterization of CoCrMo biomedical alloys. Tribology International, 93(2016), 563–572.
  • 14. Ryniewicz A.M., Ryniewicz W.I.: Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions. Acta of Bioengineering and Biomechanics, 18, 1(2016), 121–127.
  • 15. PN-EN ISO 6507-1:2007: Metals-Vickers hardness test – Part 1: Test method.
  • 16. Bojko Ł., Ryniewicz A.M., Bogucki R., Pałka P.: Microstructural and strength studies Co-Cr-Mo alloy on prosthetic reconstructions in casting technology and laser sintering. Przegląd elektrotechniczny, 91(2015), 29–32.
  • 17. Balla V.K., Soderlind J., Bose S., Bandyopadhyay A.: Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy. Journal of the mechanical behavior of biomedical materials, 32(2014), 335–344.
  • 18. Henriques B., Soares D., Silva F.S.: Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal–ceramic dental restorations, Journal of the mechanical behavior of biomedical materials, 12(2012), 83–92.
  • 19. Ryniewicz A.M, Ryniewicz W., Strength tests and tribological properties of titanium intended for construction of permanent prosthetic restorations, Implant Prosthetics, 1, 30(2008), 42–47.
  • 20. Murr L.E., Quinones S.A., Gaytan S.M., Lopez M.I., Rodela A., Martinez E.Y., Hernandez D.H., Martinez E., Medina F., Wicker R.B.: Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications”, Journal of the mechanical behavior of biomedical materials, 2(2009), 20–32.
  • 21. Yadroitsev I., Krakhmalev P., Yadroitsava I.: Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution, Journal of Alloys and Compounds, 583(2012), 404–409.
  • 22. Ramosoeu M.E., Chikwanda H.K., Bolokang A.S., Booysen G., Ngonda T.N.: Additive manufacturing: characterization of TI-6AI-4V alloy intended for biomedical application, Southern African Institute of Mining and Metallurgy advanced metals initiative: Light Metals Conference, Misty Hills, Muldersdrift, 27–29 October 2010, 337–344.
  • 23. Giacchi J.V., Morando C.N., Fornaro O., Palacio H.A.: Microstructural characterization of as-cast biocompatible Co– Cr–Mo alloys, Materials Characterization, 62, 1(2011), 53–61.
  • 24. Ram G.J., Esplin C.K., Stucker B.E.: Microstructure and wear properties of LENS® deposited medical grade CoCrMo, Journal of Materials Science: Materials in Medicine, 19, 5(2008), 2105–2111.
  • 25. Karaali A., Mirouh K., Hamamda S., Guiraldenq P.: Microstructural study of tungsten influence on Co–Cr alloys, Materials Science and Engineering: A, 390, 1(2005), 255–259.
  • 26. Sato Y., Nomura N., Fujinuma S., Chiba A., Microstructure and tensile properties of hot-pressed Co-Cr-Mo alloy compacts for biomedical applications, Journal of the Japan Institute of Metals, 72, 7(2008), 532–537.
  • 27. Ryniewicz A., Bojko Ł., Ryniewicz W.: Selected Mechanical Properties of Titanium in Dental Implantology Reconstruction Procedure, Engineering of Biomaterials, 112(2012), 48–53.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53119750-99dd-46d4-ad24-b3a4f7dd415c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.