PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary long-term predictive modelling of groundwater resources in view of climate change : a case study from eastern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses an effective and simple approach to preliminary long-term predictive modelling to the estimation of the effects of predicted climate change on groundwater resources in aquifer recharged by rain infiltration for the end of the 21st century. The groundwater resources in an analysed catchment were assessed based on predicted precipitation and air temperature from seven climate change projections in two sets of the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas emission scenarios (SRES), associated with various regional climate models (RCM). The predicted groundwater resources were obtained by diminishing the predicted renewable resources by recent environmental flows in a river dewatering the catchment. The predicted reserve was assessed taking into account the forecasted groundwater abstraction. The study revealed that the predicted groundwater reserve depended on the assumed prediction model, based on particular SRES and RCM ensembles. The groundwater resources in the study area at the close of the 21st century are expected to considerably decrease when compared to the reference period 1971-1990. The future groundwater reserve assessed by the climate change model based on IPCC emission scenario B2 connected with the regional climate model HIRHAM and regional climate model RCAO, may decrease when compared to the reference period, by 51 or 92%, respectively. In view of the IPCC emission scenario A2 assumptions, this preliminary predictive modelling shows that there may be a shortage of groundwater resources in the analysed catchment in the final decades of the 21st century.
Rocznik
Strony
643--656
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Acreman, M., 2016. Environmental flows - basics for novices. WIREs Water, 3: 622-628.
  • 2. Aeschbach-Hertig, W., Gleeson, T., 2012. Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5: 853-861.
  • 3. Ali, R., McFarlane, D., Varma, S., Dawes, W., Emelyanova, I., Hodgson, G., Charles, S., 2012. Potential climate change impacts on groundwater resources of south-western Australia. Journal of Hydrology, 475: 456-472.
  • 4. Baruffi, F., Cisotto, A., Cimolino, A., Ferri, M., Monego, M., Norbiato, D., Cappelletto, M., Bisaglia, M., Pretner, A., Galli, A., Scarinci, A., Marsala, V., Panelli, C., Gualdi, S., Bucchignani, E., Torresan, S., Pasini, S., Critto, A., Marcomini, A., 2012. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: an integrated modeling approach for hazard scenario construction. Science of the Total Environment, 440: 154-166.
  • 5. Brown, T.C., Foti, R., Ramirez, J.A., 2013. Projected freshwater withdrawals in the United States under a changing climate. Water Resources Research, 49: 1259-1276.
  • 6. Christensen, O.B., Drews, M., Christensen, J.H., Dethloff, K., Ketelsen, K., Hebestadt, I., Rinke, A., 2007. The HIRHAM Regional Climate Model Version 5 (β). Technical report 06-17. Danish Climate Centre - DMI, Copenhagen. Available online: https://www.dmi.dk/fileadmin/Rapporter/TR/tr06-17.pdf.
  • 7. Ciscar, J.C., Iglesias, A., Feyen, L., Goodess, C.M., Szabó, L., Christensen, O.B., Nicholls, R., Amelung, B., Watkiss, P., Bosello, F., Dankers, R., Garrote, L., Hunt, A., Horrocks, L., Moneo, M., Moreno, A., Pye, S., Quiroga, S., van Regemorter, D., Richards, J., Roson, R., Soria, A., 2009. Climate change impacts in Europe. Final report of the PESETA research project. EC Joint Research Centre (JRC), Scientific and Technical Research Series, EUR 24093 EN, European Communities, Luxembourg. Available online: http://publications.jrc.ec.europa.eu/repository/handle/JRC55391.
  • 8. Crosbie, R.S., Dawes, W.R., Charles, S.P., Mpelasoka, F.S., Aryal, S., Barron, O., Summerell, G.K., 2011. Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophysical Research Letters, 38: L11406.
  • 9. Döll, P., Jiménez-Cisneros, B., Oki, T., Arnell, N.W., Benito, G., Cogley, J.G., Jiang, T., Kundzewicz, Z.W., Mwakalila, S., Nishijima, A., 2015. Integrating risks of climate change into water management. Hydrological Sciences Journal, 60: 4-13.
  • 10. Earman, S., Dettinger, M., 2011. Potential impacts of climate change on groundwater resources - a global review. Journal of Water and Climate Change, 2: 213-229.
  • 11. Emam, A.R., Kappas, M., Hosseini, S.Z., 2015. Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin. Hydrology Research, 46: 854-870.
  • 12. Gorelick, S.M., Zheng, Ch., 2015. Global change and the groundwater management challenge. Water Resources Research, 51: 3031-3051.
  • 13. Green, T.R., 2016. Linking climate change and groundwater. In: Integrated Groundwater Management: Concepts, Approaches and Challenges (eds. A.J. Jakeman, O. Barreteau, R.J. Hunt, J.-D. Rinaudo and A. Ross): 97-141. Springer Open.
  • 14. Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H., Aureli, A., 2011. Beneath the surface of global change: impacts of climate change on groundwater (Review). Journal of Hydrology, 405: 532-560.
  • 15. Grela, J., Biedroń, I., Boroń, A., Gąsior, M., Grzebinoga, M., Krawczyk, D., Madej, P., Olszar, M., Piszczek, M., 2018. Wdrożenie metody szacowania przepływów środowiskowych w Polsce. Etap II (in Polish). MGGP, Kraków, Warszawa.
  • 16. Hao, C.F., He, L.M., Niu, C.W., Jia, Y.W., 2016. A review of environmental flow assessment: methodologies and application in the Qianhe River. IOP Conference Series: Earth and Environmental Science, 39: 012067.
  • 17. Herbich, P., Przytuła, E., 2012. Bilans wodnogospodarczy wód podziemnych z uwzględnieniem oddziaływań wodami powierzchniowymi w dorzeczu Wisły (in Polish). Informator Państwowej Służby Hydrogeologicznej. Polish Geological Institute - National Research Institute, Warsaw.
  • 18. Herbich, P., Kapuściński, J., Nowicki, K., Rodzoch, A., 2013. Metodyka określania zasobów dyspozycyjnych wód podziemnych w obszarach bilansowych z uwzględnieniem potrzeb jednolitych bilansów wodnogospodarczych - poradnik metodyczny (in Polish). BORGIS, Warszawa.
  • 19. Hiscock, K., Sparkes, R., Hodgson, A., 2012. Evaluation of future climate change impacts on European groundwater resources. In: Climate Change Effects on Groundwater Resources. A Global Synthesis of Findings and Recommendations (eds. H. Treidel, J.L. Martin-Bordes and J.J. Gurdak). International Association of Hydrogeologists, International Contributions to Hydrogeology, 27: 351-365.
  • 20. Holman, I.P., Allen, D.M., Cuthbert, M.O., Goderniaux, P., 2012. Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeology Journal, 20: 1-4.
  • 21. IMGW, 2018. Baza danych hydrologicznych (in Polish). Institute of Meteorology and Water Management, Warszawa.
  • 22. Jackson, C.R., Meister, R., Prudhomme, C., 2011. Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. Journal of Hydrology, 399: 12-28.
  • 23. Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O.B., Bouwer, L.M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., Yiou, P., 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 14: 563-578.
  • 24. Jaworska-Szulc, B., 2015. Impact of climate change on groundwater resources in a young glacial multi-aquifer system. Polish Journal of Environmental Studies, 24: 2447-2457.
  • 25. Kille K., 1970. Das Verfahren MoMNQ, ein Beitrag zur Berechnung der mittleren langjährigen Grundwasserneubildung mit Hilfe der monatlichen Niedrigwasserabflusse. Zeitschrift der Deutschen Geologischen Gesellschaft - Band Sonderba, Hydrogeologie u. Hydrogeochemie: 89-95, Hannover.
  • 26. Kristvik, E., Muthanna, T.M., Alfredsen, K., 2019. Assessment of future water availability under climate change, considering scenarios for population growth and ageing infrastructure. Journal of Water and Climate Change, 10: 1-10.
  • 27. Leng, G., Tang, Q., Rayburg, S., 2015. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126: 23-34.
  • 28. Liu, J., Cao, G., Zheng, Ch., 2011. Sustainability of groundwater resources in the North China Plain. In: Sustaining Groundwater Resources. A Critical Element in the Global Water Crisis (ed. J.A.A. Jones): 69-87. International Year of Planet Earth, Springer Science and Business Media B.V.
  • 29. Lorenz, D.J., DeWeaver, E.T., Vimont, D.J., 2010. Evaporation change and global warming: the role of net radiation and relative humidity. Journal of Geophysical Research: Atmospheres, 115: D20118.
  • 30. Madej, P., 2018. Analiza metody szacowania przepływów środowiskowych w Polsce i podstawy jej weryfikacji (in Polish). Proceedings of Conference „Wdrożenie metody szacowania przepływów środowiskowych w Polsce”, Warszawa.
  • 31. Malekinezhad, H., Banadkooki, F.B., 2017. Modeling impacts of climate change and human activities on groundwater resources using MODFLOW. Journal of Water and Climate Change, 9: 156-177.
  • 32. Meza, F.J., Vicuńa, S., Jelinek, M., Bustos, E., Bonelli, S., 2014. Assessing water demands and coverage sensitivity to climate change in the urban and rural sectors in central Chile. Journal of Water and Climate Change, 5: 192-203.
  • 33. Miętus, M., Wibig, J., 2011. Projekt KLIMAT - wpływ zmian klimatu na środowisko, gospodarkę i społeczeństwo. Zadanie 1 - Zmiany klimatu i ich wpływ na środowisko naturalne Polski oraz określenie ich skutków ekonomicznych (in Polish). Institute of Meteorology and Water Management, Warszawa-Gdynia-Kraków: http://klimat.imgw.pl/wp-content/uploads/2013/02/ Zadanie1_2011.pdf.
  • 34. Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P., Wilbanks, T.J., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463: 747-756.
  • 35. Nakićenović, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R.A., Rogner, H.-H., Victor, N., 2000. Special Report on Emissions Scenarios (SRES). A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge. Available online: http://pure.iiasa.ac.at/6101.
  • 36. Ng, G.-H.C., McLaughlin, D., Entekhabi, D., Scanlon, B.R., 2010. Probabilistic analysis of the effects of climate change on groundwater recharge. Water Resources Research, 46: W07502.
  • 37. Olichwer, T., Tarka, R., 2015. Impact of climate change on the groundwater run-off in south-west Poland. Open Geosciences, 7: 1-14.
  • 38. Paczyński, B., Sadurski, A. eds., 2007. Hydrogeologia regionalna Polski, tom I - wody słodkie (in Polish). Polish Geological Institute, Warszawa.
  • 39. Parasiewicz, P., Prus, P., Suska, K., Marcinkowski, P., 2018. “E=mc2" of environmental flows: a conceptual framework for establishing a fish-biological foundation for a regionally applicable environmental low-flow formula. Water, 10: 1501.
  • 40. Pusłowska-Tyszewska, D., Tyszewski, S., 2018. Attempt at implementing the 2015 “Ecological Flow Assessment Method For Poland” in the Wieprza River catchment. Acta Scientiarum Polonorum, Formatio Circumiectus, 17: 181-193.
  • 41. Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., Rafaj, P., 2011, RCP8.5 - a scenario of comparatively high greenhouse gas emissions. Climatic Change, 109: 33-57.
  • 42. Staśko, S., Tarka, R., Olichwer, T., 2012. Groundwater recharge evaluation based on the infiltration method. In: Groundwater Quality Sustainability (eds. P. Maloszewski, S. Witczak and G. Malina). International Association of Hydrogeologists, Selected Papers, 17: 189-197.
  • 43. Tarka, R., Olichwer, T., Staśko, S., 2017. Evaluation of groundwater recharge in Poland using the infiltration coefficient method. Geological Quarterly, 61 (2): 384-395.
  • 44. Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergene, L., Lablanc, M., Famiglietti, J.S., Edmunds, M. , Konikow, L., Green, T.R., Chen, J. , Taniguchi, M., Bierkens, M.F.P., Macdonald, A., Fan, Y., Maxwell, R.M., Yechieli, Y., Gurdak, J.J., Allen, D.M. , Shamsudduha, M., Hiscick, K., Yeh, P.J.F., Holman, I., Treide, H., 2012. Groundwater and climate change. Nature Climate Change, 3: 322-329.
  • 45. Tharme, R.E., 2003. A global perspective on ecological flow assessment: emerging trends in the development and application of ecological flow methodologies for rivers. River Research and Applications, 19: 397-441.
  • 46. Thomson, A.M., Calvin, K.V., Smith, S.J., Kyle, G.P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M.A., Clarke, L.E., Edmonds, J.A., 2011. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change, 109: 77-94.
  • 47. Tillman, F.D., Gangopadhyay, S., Pruitt, T., 2016. Changes in groundwater recharge under projected climate in the upper Colorado River basin. Geophysical Research Letters, 43: 6968-6974.
  • 48. Vetter, T., Reinhardt, J., Floerke, M., van Griensven, A., Hattermann, F., Huang, S., Koch, H., Pechlivanidis, J., Ploetner, S., Seidou, O., Su, B., Vervoort, R.W., Krysanova, V., 2017. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change, 141: 419-433.
  • 49. Wada, Y., van Beek, L.P.H., van Kempen, Ch.M., Reckman, J.W.T.M., Vasak, S., Bierkens, M.F.P., 2010. Global depletion of groundwater resources. Geophysical Research Letters, 37: L20402.
  • 50. Winkler, J.A., Guentchev, G.S., Perdinan, Tan, P.-N., Zhong, S., Liszewska, M., Abraham, Z., Niedźwiedź, T., Ustrnul, Z., 2011. Climate scenario development and applications for local/regional climate change impact assessments: an overview for the non-climate scientist, Part I: scenario development using downscaling methods. Geography Compass, 5/6: 275-300.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-530d62f0-732c-400c-8352-48d0f4c40974
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.