PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of buckling behaviour on an FPSO deck panel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stiffened plates are the main structural building block in ship and offshore hulls and their structural response subject to loads is a topic of significant practical interest in ship and offshore structural design. To investigate the structural capacity for design and evaluation purposes, it is becoming an efficient and reliable practice to carry out non-linear finite element (FE) analysis. The present study is to assess the buckling strength of a stiffened deck panel on an FPSO vessel using the nonlinear finite element code ADVANCE ABAQUS, where imperfection sensitivity work is also accounted for. The cases studied correspond to in-plane bi-axial compression in the two orthogonal directions. The findings are compared with the DNVGL PULS (Panel Ultimate Limit State) buckling code for the stiffened panels. It is found that the strength values from the ADVANCE ABAQUS and DNVGL PULS code are very close. The results and insights developed from the present work are discussed in detail.
Rocznik
Tom
Strony
50--58
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Istanbul Technical University, Dept. of Naval Architecture and Ocean Eng., Maslak, 34469 Istanbul, Turkey
Bibliografia
  • 1. Amlashi H., Moan T. (2009): Ultimate strength analysis of a bulk carrier hull girder under alternate hold loading condition, Part 2: Stress distribution in the double bottom and simplified approaches. Marine Structures, 22 (3), 522‒544.
  • 2. Caldwell J. B. (1965): Ultimate longitudinal strength. Trans. Royal Inst. Nav. Arch., 107, 411‒430.
  • 3. DNV GL Classification Notes (2017): Buckling strength analyses, CN 30.1.
  • 4. DNV GL Rules for Classification (2018): Hull structural design ships with length 100 meters and above, Part 3 Chapter 1.
  • 5. DNV GL Rules (2015): Hull survey – workmanship standard, DNV Instructions to Surveyors No. I-B3.3.
  • 6. Do H. C., Jiang W., Jin J., Chen X. (2013): An investigation of ultimate strength for VLOC stiffened panel structure. Modern Transportation, 2(2), 23‒38.
  • 7. Fujikubo M., Harada M., Yao T., Khedmati M. R., Yanagihara D. (2005): Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure, Part 2: Continuous stiffened panel. Marine Structures, 18, 411‒427.
  • 8. Fujikubo M., Yao T., Khedmati M. R., Harada M., Yanagihara D. (2005): Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure, Part 1: Continuous plate. Marine Structures, 18, 383‒410.
  • 9. Karlson H., Sorensen I. (2012): ABAQUS/Standard User’s Manual.
  • 10. Kim D. K., Lim H. L., Yu S. Y. (2018): A technical review on ultimate strength prediction of stiffened panels in axial compression. Ocean Engineering, 170(15), 392‒406.
  • 11. Lee D. H., Kim S. J., Lee M. S., Paik J. K. (2019): Ultimate limit state based design versus allowable working stress based design for box girder crane structures. Thin-Walled Structures, 134, 491‒507.
  • 12. Mansour A. E., Liu D., Paulling J. R. (2008): Strength of ships and ocean structures. Principles of Naval Architecture Series (Society of Naval Architects and Marine Engineers (US). Jersey City, N.J.: Society of Naval Architects and Marine Engineers.
  • 13. Oksina A., Lindemann T., Kaeding P., Fujikubo M. (2016): Idealized structural unit method: A review of the current formulation. International Conference on Offshore Mechanics and Arctic Engineering, Volume 9: Prof. Norman Jones Honoring Symposium on Impact Engineering; Prof. Yukio Ueda Honoring Symposium on Idealized Nonlinear Mechanics for Welding and Strength of Structures.
  • 14. Ozguc O., Das P. K., Barltrop N. (2007): The new simple design equations for the ultimate compressive strength of imperfect stiffened plates. Ocean Engineering, 34(7), 970–986.
  • 15. Ozguc O. (2018): Estimation of buckling response of the deck panel in axial compression. Polish Maritime Research, 25, No. 100, 98‒105.
  • 16. Paik J., Kim B., Seo J. (2008a): Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: Part I—Unstiffened plates. Ocean Engineering, 35(2), 261‒270.
  • 17. Paik J., Kim B., Seo J. (2008b): Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: Part II—Stiffened plates. Ocean Engineering, 35(2), 261‒270.
  • 18. Paik J., Kim B., Seo J. (2008c): Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: Part III —Hull girders. Ocean Engineering, 35 (2), 281‒286.
  • 19. Paik J. K., Kim D. K., Lee H., Shim Y. L. (2012): A method for analyzing elastic large deflection behavior of perfect and imperfect plates with partially rotation-restrained edges. Journal of Offshore Mechanics and Arctic Engineering, 134.
  • 20. Paik J. K., Seo J. K. (2009a): Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions—Part I: Plate elements. Thin-Walled Structures, 47(8-9), 1008‒1017.
  • 21. Paik J. K., Seo J. K. (2009b): Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions—Part II: Stiffened panels. Thin-Walled Structures, 47(8‒9), 998‒1007.
  • 22. Shi X. H., Zhang J., Soares C. G. (2018): Numerical assessment of experiments on the ultimate strength of stiffened panels with pitting corrosion under compression. Thin-Walled Structures, 133, 52‒70.
  • 23. Steen E., Byklum E., Vilming K. G. (2010): PULS verification manual - PULS Version 2.0.
  • 24. Tekgoz M., Garbatov Y., Soares C. G. (2012): Ultimate strength assessment accounting for the effect of finite element modelling. Maritime Engineering and Technology, 59‒74.
  • 25. Wang G., Sun H., Peng H., Uemori R. (2009): Buckling and ultimate strength of plates with openings. Ships and Offshore Structures, 4(1), 43‒53.
  • 26. Xu M. C., Song Z. J., Zhang B. W., Pan J. (2018): Empirical formula for predicting ultimate strength of stiffened panel of ship structure under combined longitudinal compression and lateral loads. Ocean Engineering, 162, 161‒175.
  • 27. Xu C. M., Guedes Soares C. (2012): Numerical assessment of experiments on the ultimate strength of stiffened panels. Engineering Structures, 45, 460‒471.
  • 28. Yao T. (2003): Hull girder strength. Marine Structures, 16(1), 1‒13.
  • 29. Zhang S., Jiang L. A. (2015): Method for ultimate strength assessment of plates in combined stresses. International Conference on Offshore Mechanics and Arctic Engineering, 3, 145‒167.
  • 30. Zhang S., Khan I. (2009): Buckling and ultimate capability of plates and stiffened panels in axial compression. Marine Structures, 22(4), 791‒808.
  • 31. ABAQUS Analysis User’s Guide (2017): Unstable Collapse and Post-buckling Analysis.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-530d1bf4-342a-4999-9447-594ef8563889
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.