PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low voltage modular circuit breakers: FEM employment for modelling of arc chambers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
FEM (finite element method) is an essential and powerful numerical method that can explicitly optimize the design process of electrical devices. In this paper, the employment of FEM tools such as SolidWorks, COMSOL and ANSYS is proposed in order to aid electrical apparatuses engineering and modeling – those are arc chambers of modular circuit breakers. Procured models of arc chambers have been undergoing simulations concerning heating, electric potential distribution, electric charge velocity and traverse paths. The data acquired has been juxta-positioned against experimental data procured in the Short-Circuit Laboratory, Warsaw University of Technology. The reflection of the theoretical approach was clearly noted in the experimental results. Mutual areas of the modeled element expressed the same physical properties and robustness errors when tested under specific conditions – faithfully reflecting those which were experimented with. Moreover, the physical phenomena essential for electrical engineering could be determined already at the model stage. This procedure proved highly valuable during designing/engineering work in terms of material economy.
Rocznik
Strony
61--70
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Institute of Electrical Power Engineering, Warsaw University of Technology
  • Institute of Electrical Power Engineering, Warsaw University of Technology
  • Institute of Electrical Power Engineering, Warsaw University of Technology
autor
  • Institute of Electrical Power Engineering, Warsaw University of Technology
Bibliografia
  • [1] R. Bini, B. Galletti, A. Iordanidis, and M. Schwinne, 1st International Conference on Electric Power Equipment – Switching Technology, Xi’an, 2011, pp. 375–378.
  • [2] L. Wang, H. Liu, W. Zheng, R. Guan, Ch. Ge, L. Chen, and Sh. Jia, “Numerical Simulation of Impact Effect of Internal Gas Pressure on Chamber Housing in Low-Voltage Circuit Breaker”, IEEE Transactions on Components, Packaging and Manufacturing Technology 4(4), (2014).
  • [3] X. Ye, M.T. Dhotre, J.D. Mantilla, and S. Kotilainen, “CFD Analysis of the Thermal Interruption Process of Gases with Low Environmental Impact in High Voltage Circuit Breakers”, 2015 Electrical Insulation Conference (EIC), Seattle, 2015.
  • [4] M.T. Dhotre, X. Ye, M. Seeger, M. Schwinne, and S. Kotilainen, “CFD Simulation and Prediction of Breakdown Voltage in High Voltage Circuit Breakers”, 2017 Electrical Insulation Conference (EIC), Baltimore, 2017.
  • [5] B. Qi, X. Zhao, Sh. Zhang, M. Huang, and Ch. Li, “Measurement of the electric field strength in transformer oil under impulse voltage”, IEEE Transactions on Dielectrics and Electrical Insulation 24, 1256–1262 (2017).
  • [6] C. Rumpler, H. Stammberger, and A. Zacharias, “Low-voltage arc simulation with out-gassing polymers”, Proc. IEEE 57th Holm Conf. Electr. Contacts, 2011, pp. 1–8.
  • [7] V.V. Ryzhov, O.N. Molokanov, P.A. Dergachev, N.A. Vedechenkov, E.P. Kurbatova, and P.A. Kurbatov, “Simulation of the Low – Voltage DC Arc”, Intenational Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2019, Russia.
  • [8] N.D. Geetha, P. Rasilo, and A. Arkkio, “Sensitivity Analysis of Inverse Thermal Modeling to Determine Power Losses in Electrical Machines”, IEEE Transactions on Magnetics 54(11), (2018).
  • [9] J. Li, Y. Cao, M. Y., Sh. Liu, Z. Du, and Y. Feng, “Research on the Effect of Magnetic Field on Micro-Characteristics of Vacumm Arc During Arc Formation Process”, 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), 2018, Germany.
  • [10] P. Tarnowski and W. Ostapski, “Pulse powered turbine engine concept – numerical analysis of influence of different valve timing concepts on thermodynamic performance”, Bull. Pol. Ac.: Tech. 66 (3), 373–382 (2018).
  • [11] V.S. Nagarajan, V. Kamaraj, and S. Sivaramakrishnan, “Geometrical sensitivity analysis based on design optimization and multiphysics analysis of PM assisted synchronous reluctance motor”, Bull. Pol. Ac.: Tech. 67 (1), 155–163 (2019).
  • [12] R. Bini, N.T. Basse, and M. Seeger, “Arc-induced Turbulent Mixing in a Circuit Breaker Model”, J. Phys D Appl Phys 44 (2), (2011).
  • [13] R. Holm, Electric Contacts – Theory and Application, NewYork, NY, USA: Springer.
  • [14] N.P.T. Basse, R. Bini, and M. Seeger, “Measured turbulent mixing in a small-scale circuit breaker model”, Appl. Optics 48 (32), 6381–6391 (2009).
  • [15] F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Introduction to Heat Transfer, 5th ed. Hoboken, NJ, 2006, USA: Wiley.
  • [16] P.T. Muller, ‘ ‘Macroscopic electro thermal simulation of contact resistances, Bachelor thesis”, RWTH, 2016, Aachen, Germany.
  • [17] W. Biao, L. Yanyan, and Z. Xiaojun, “Study on detection technology of the contact pressure on the electrical contacts of relays”, 26th International Conference on Electrical Contacts (ICEC), 2012, pp. 161 – 164.
  • [18] X. Sun, B. Su, L. Chen, Z. Yang, and K. Li, “Design and analysis of interior composite-rotor bearingless permanent magnet synchronous motors with two layer permanent magnets”, Bull. Pol. Ac.: Tech. 65 (6), 833-843 (2017).
  • [19] M. Kriegelet, X. Zhu, H. Digard, S. Feitoza, M. Glinkowki, et al., “Simulations and Calculations as verification tools for design and performance of high voltage equipment”, CIGRE, Paris, France, , A3-210 (2008).
  • [20] P. Kumar and A. Kale, “3-Dimensional CFD simulation of an internal arc in various compartments of LV/MV Switchgear”, Ansys Convergence Conference, 2016.
  • [21] D.J. Hartland, “Electric contact systems – passing power to the trains”, IET Professional Development Course on Electric Traction Systems, 2010, pp. 25–37.
  • [22] G. Chen, L. Lan, Z. Pan X. Wen, Y. Wang, and Y. Wu, “Electrical erosion test and condition assessment of SF6 CB contact sets”, IET Generation, Transmission & Distribution 11 (8), 1901–1909 (2017).
  • [23] J.D. Mantilla, N. Gariboldi, S. Grob, and M. Claessens, “Investigation of the insulation performance of a new gas mixture with extremely low GWP”, Electrical Insulation Conference, Philadelphia, 2014.
  • [24] A.A. Iordanidis and C.M. Franck, “Self-consistent radiation based simulation of electric arcs: Application to gas circuit breakers”, Journal of Physics D: Applied Physics 41, 135206, (2008).
  • [25] X. Ye and M.T. Dhotre, “CFD Simulation of Transonic Flow in High Voltage Circuit Breaker”, International Journal of Chemical Engineering, 2012, Article ID 609486.
  • [26] H. Kim, I. Chong, and S. Lee, “Analysis of SLF Interruption Performance of Self-Blast Circuit Breaker by Means of CFD Calculation”, Journal of Electrical Engineering & Technology 9 (1), 254–258 (2014).
  • [27] M. Lindmayer and H. Stammberger, “Application of numerical field simulations for low-voltage circuit breakers”, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A 18 (3), (1995).
  • [28] P.U. Frei and H.O. Weichert, “Advanced Thermal Simulation of a Circuit Breaker”, Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts (2004).
  • [29] S. Ito, Y. Takato, Y. Kawase, and T. Ota, “Numerical analysis of electromagnetic forces in low voltage AC circuit breakers using 3-D finite element method taking into account eddy currents”, IEEE Transactions on Magnetics 34 (5), (1998).
  • [30] Ch. Degui, L. Xingwen, J. Liang, and Z. Xin, “Numerical Simulation of Arc Motion During Interruption Process of Low-Voltage Circuit Breakers”, ICEC 2012.
  • [31] P. Kačor and P. Bernat, “Analysis of force characteristic of short-circuit release in low voltage circuit breaker”, Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering, (2014).
  • [32] M. Conecici-Lucian, C. Munteanu, and I.M. Purcar, “3D finite element analysis of a miniature circuit breaker”, 6th International Conference on Modern Power Systems MPS2015, Cluj-Napoca, 2015.
  • [33] L. Chunlei, W. Dong, Z. Bing, L. Jin, and Z. Wenjun, “On Novel Methods for Characterizing the Arc/Contact Movement and Its Relation With the Current/Voltage in Low-Voltage Circuit Breaker”, IEEE Transactions on Plasma Science 45 (5), 882–888 (2017).
  • [34] N. Vasiraja and P. Nagaraj, “The effect of material gradient on the static and dynamic response of layered functionally graded material plate using finite element method”, Bull. Pol. Ac.: Tech. 67 (4), 828–838 (2019).
  • [35] 1. D. Pop, L. Neamt, R. Tirnovan, and D. Sabou, ‘ “3D Finite Element Analysis of a Miniature Circuit Breaker”, HE 8th International Symposium on Advanced Topics in Electrical Enginnering, Bucharest, 2013.
  • [36] Ch. Degui, D. Ruicheng, Z. Jingshu, and T. Weixiong, “Dynamic Simulation of Operating Mechanism for Molded Case Circuit Breaker”, Electrical Contacts, 2007.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-530b2b12-8e06-457b-8cdb-d745394e66cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.