PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

General Geometric Model of GNSS Position Time Series for Crustal Deformation Studies – A Case Study of CORS Stations in Vietnam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In processing of position time series of crustal deformation monitoring stations by continuous GNSS station, it is very important to determine the motion model to accurately determine the displacement velocity and other movements in the time series. This paper proposes (1) the general geometric model for analyzing GNSS position time series, including common phenomena such as linear trend, seasonal term, jumps, and post-seismic deformation; and (2) the approach for directly estimating time decay of postseismic deformations from GNSS position time series, which normally is determined based on seismic models or the physical process seismicity, etc. This model and approach are tested by synthetic position time series, of which the calculation results show that the estimated parameters are equal to the given parameters. In addition they were also used to process the real data which is GNSS position time series of 4 CORS stations in Vietnam, then the estimated velocity of these stations: DANA (n, e, u = -9.5, 31.5, 1.5 mm/year), HCMC (n, e, u = -9.5, 26.2, 1.9 mm/year), NADI (n, e, u = -10.6, 31.5, -13.4 mm/year), and NAVI (n, e, u = -13.9, 32.8, -1.1 mm/year) is similar to previous studies.
Rocznik
Tom
Strony
183--197
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Hanoi University of Civil Engineering, Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Hanoi University of Civil Engineering, Hanoi, Vietnam
Bibliografia
  • 1. Hodgkinson, K.M., Mencin, D.J., Feaux, K., Sievers, C., Mattioli, G.S., 2020. Evaluation of earthquake magnitude estimation and event detection thresholds for real-time GNSS networks: Examples from recent events captured by the network of the Americas, Seismological Research Letters, 91(3): 1628–1645, https://doi.org/10.1785/0220190269.
  • 2. Mattioli, G., Mencin, D., Hodgkinson, K., Meertens, C., Phillips, D., Blume, F., Berglund, H., Fox, O., Feaux, K., 2016. The EarthScope Plate Boundary Observatory and allied networks, the makings of nascent Earthquake and Tsunami Early Warning System in Western North America, EGU General Assembly Conference Abstracts, EPSC2016-10953.
  • 3. Sagiya, T., 2004. A decade of GEONET: 1994-2003 - The continuous GPS observation in Japan and its impact on earthquake studies, Earth, Planets and Space, 56(8): 1994–2003. https://doi.org/10.1186/BF03353077.
  • 4. Hatanaka, Y., Iizuka, T., Sawada, M., Yamagiwa, A., Kikuta, Y., Johnson, J., Rocken, C., 2003. Improvement of the analysis strategy of GEONET, Bull. Geogr. Surv. Inst, 49: 11–37.
  • 5. Li, C.K., Ching, K.E., Chen, K.H., 2019. The ongoing modernization of the Taiwan semi-dynamic datum based on the surface horizontal deformation model using GNSS data from 2000 to 2016, Journal of Geodesy, 93(9): 1543–1558, https://doi.org/10.1007/s00190-019-01267-5.
  • 6. Segall, P., Davis, J.L., 1997. GPS applications for geodynamics and earthquake studies. Annual Review of Earth and Planetary Sciences, 25: 301–336, https://doi.org/10.1146/annurev.earth.25.1.301.
  • 7. Nicolas, J., Nocquet, J.M., Van Camp, M., van Dam, T., Boy, J.P., Hinderer, J., Gegout, P., Calais, E., Amalvict, M., 2006. Seasonal effect on vertical positioning by Satellite Laser Ranging and Global Positioning System and on absolute gravity at the OCA geodetic station, Grasse, France, Geophysical Journal International, 167(3): 1127–1137, https://doi.org/10.1111/j.1365-246X.2006.03205.x.
  • 8. Bevis, M., Jonathan, B., Dana J., C.I., The Art and Science of Trajectory Modelling, In J.-P. Montillet M.S. Bos (Eds.), Geodetic Time Series Analysis in Earth Sciences, 1st ed., 1–29, Springer International Publishing, 2020.
  • 9. Le, H.M., Masson, F., Bourdillon, A., Fleur, R., Hu, J., Vu, T.H., Le, T.T., Nguyen, C.T., Nguyen, H., 2014. Recent crustal motion in Vietnam and in the Southeast Asia region by continuous GPS data (in Vietnamese), Vietnam Journal of Earth Sciences, 36(1): 1–13.
  • 10. Duong, N.A., Sagiya, T., Kimata, F., To, T.D., Hai, V.Q., Cong, D.C., Binh, N.X., Xuyen, N.D., 2013. Contemporary horizontal crustal movement estimation for northwestern Vietnam inferred from repeated GPS measurements, Earth, Planets and Space, 65(12): 1399–1410, https://doi.org/10.5047/eps.2013.09.010.
  • 11. Deng, L., Jiang, W., Chen, H., Zhu, Z., Zhao, W., 2017. Study of the effects on GPS coordinate time series caused by higher-order ionospheric corrections calculated using the DIPOLE model, Geodesy and Geodynamics, 8(2): 111–119, https://doi.org/10.1016/j.geog.2017.01.004.
  • 12. Masson, C., Mazzotti, S., Vernant, P., 2019. Precision of continuous GPS velocities from statistical analysis of synthetic time series, Solid Earth, 10(1): 329–342, https://doi.org/10.5194/se-10-329-2019.
  • 13. Nunnari, G., Cannavo, F., 2019. Automatic offset detection in GPS time series by change point approach, Proceedings of the 16th International Conference on Informatics in Control ICINCO 2019, Automation and Robotics, 1(Icinco), 377–383, https://doi.org/10.5220/0007951503770383.
  • 14. Wu, D., Yan, H., Shen, Y., 2017. TSAnalyzer, a GNSS time series analysis software, GPS Solutions, 21(3): 1389–1394. https://doi.org/10.1007/s10291-017-0637-2.
  • 15. Tran, D.T. Analyse rapide et robuste des solutions GPS pour la tectonique, Thesis, Université de Nice Sophia Antipolis, France, 2013.
  • 16. Nikolaidis, R. Observation of geodetic and seismic deformation with the Global Positioning System, Thesis, University of California, San Diego, USA, 2002.
  • 17. Montillet, J.-P., Williams, S.D.P., Koulali, A., McClusky, S.C., 2015. Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field, Geophysical Journal International, 200(2): 1207–1221, https://doi.org/10.1093/gji/ggu473.
  • 18. Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., Moore, A.W., Ostini, L., Petrie, E., Roggero, M., Teferle, F.N., Olivares, G., Webb, F.H., 2013. Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment, Journal of Geophysical Research: Solid Earth, 118(5): 2397–2407, https://doi.org/10.1002/jgrb.50152.
  • 19. Pellegrinelli, A., Perfetti, N., Russo, P., 2005. Time series analysis of daily solutions of IGFN permanent GPS stations, Bollettino Di Geofisica Teorica Ed Applicata, 46(2–3): 85–97.
  • 20. Rajner, M., Liwosz, T., 2017. Analysis of seasonal position variation for selected GNSS sites in Poland using loading modelling and GRACE data, Geodesy and Geodynamics, 8(4): 253–259, https://doi.org/10.1016/j.geog.2017.04.001.
  • 21. Métivier, L., Collilieux, X., Lercier, D., Altamimi, Z., Beauducel, F., 2014. Global coseismic deformations, GNSS time series analysis, and earthquake scaling laws, Journal of Geophysical Research: Solid Earth, 119(12): 9095–9109, https://doi.org/10.1002/2014jb011280.
  • 22. Klos, A., Bogusz, J.B., Bos, M.S., Gruszczynska, M. Modelling the GNSS Time Series: Different Approaches to Extract Seasonal Signals. In J.-P. Montillet M. S. Bos (Eds.), Geodetic Time Series Analysis in Earth Sciences, 1st ed, Springer International Publishing, 2020.
  • 23. Loevenbruck, A., Cattin, R., Le Pichon, X., Dominguez, S., Michel, R., 2004. Coseismic slip resolution and post-seismic relaxation time of the 1999 Chi-Chi, Taiwan, earthquake as constrained by geological observations, geodetic measurements and seismicity, Geophysical Journal International, 158(1): 310–326, https://doi.org/10.1111/j.1365-246X.2004.02285.x.
  • 24. Vallejos, J.A., McKinnon, S.D., 2011. Correlations between mining and seismicity for re-entry protocol development, International Journal of Rock Mechanics and Mining Sciences, 48(4): 616–625, https://doi.org/10.1016/j.ijrmms.2011.02.014.
  • 25. Perfettini, H., Avouac, J.P., 2004. Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan, Journal of Geophysical Research: Solid Earth, 109(B2): 1–15, https://doi.org/10.1029/2003jb002488.
  • 26. Tran, D.T., Nguyen, D.H., Luong, N.D., Dao, D.T., 2020. Impact of the precise ephemeris on accuracy of GNSS baseline in relative positioning technique, Vietnam journal of earth sciences, 43(1): 96–110, https://doi.org/10.15625/0866-7187/15745.
  • 27. Uzel, T., Eren, K., Gulal, E., Tiryakioglu, I., Dindar, A.A., Yilmaz, H., 2013. Monitoring the tectonic plate movements in Turkey based on the national continuous GNSS network, Arabian Journal of Geosciences, 6(9): 3573–3580, https://doi.org/10.1007/s12517-012-0631-5.
  • 28. El-Mowafy, A., Bilbas, E., 2016. Quality Control in Using GNSS CORS Network for Monitoring Plate Tectonics: A Western Australia Case Study, Journal of Surveying Engineering, 142(2), https://doi.org/10.1061/(asce)su.1943-5428.0000157.
  • 29. Cong Khai, P., Tran, D.T., Nguyen, V.H., 2020. GNSS/CORS-Based Technology for Real-Time Monitoring of Landslides on Waste Dump – A Case Study at the Deo Nai South Dump, Vietnam, Inżynieria Mineralna, 1(2), https://doi.org/10.29227/IM-2020-02-23.
  • 30. Long, N.Q., My, V.C., Luyen, B.K., 2016. Divergency verification of predicted values and monitored deformation indicators in specific condition of Thong Nhat underground coal mine (Vietnam), Geoinformatica Polonica, 15,15–22,https://doi.org/10.4467/21995923GP.16.002.5479.
  • 31. Nguyen, L.Q., Ahmad, A., Cao, C.X., Van Le, C., 2018. Designing observation lines: a case study of the G9 seam in the Mong Duong colliery, Journal of Mining and Earth Sciences, 59(6): 28–34.
  • 32. Nguyen, N.L., Coleman, R., Ha, M.H., 2021. Determination of tectonic velocities of some continuously operating reference stations (CORS) in Vietnam 2016-2018 by using precise point positioning, Vietnam Journal of Earth Sciences, 43(1): 1–12, https://doi.org/10.15625/0866-7187/15571.
  • 33. Chamoli, A., Lowry, R.A., Jeppson, T.N., 2013. Implications of transient deformation in the northern Basin and Range, western United States, Journal of Geophysical Research, Solid Earth, 119: 4393–4413, https://doi.org/10.1002/2013JB010605.
  • 34. Vergnolle, M., Walpersdorf, A., Kostoglodov, V., Tregoning, P., Santiago, J.A., Cotte, N., Franco, S.I., 2010. Slow slip events in Mexico revised from the processing of 11 year GPS observations, Journal of Geophysical Research: Solid Earth, 115(8): 1–18, https://doi.org/10.1029/2009JB006852.
  • 35. Riel, B., Simons, M., Agram, P., Zhan, Z., 2014. Detecting transient signals in geodetic time series using sparse estimation techniques, Journal of Geophysical Research: Solid Earth, 119(6): 5140–5160, https://doi.org/10.1002/2014JB011077.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53099440-d0fd-4a3d-ad9d-6ea4c20ae0e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.