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Abstract. In processing of position time series of crustal deformation monitoring stations by continuous 

GNSS station, it is very important to determine the motion model to accurately determine the displacement 

velocity and other movements in the time series. This paper proposes (1) the general geometric model for 

analyzing GNSS position time series, including common phenomena such as linear trend, seasonal term, 

jumps, and post-seismic deformation; and (2) the approach for directly estimating time decay of 

postseismic deformations from GNSS position time series, which normally is determined based on seismic 

models or the physical process seismicity, etc. This model and approach are tested by synthetic position 

time series, of which the calculation results show that the estimated parameters are equal to the given 

parameters. In addition they were also used to process the real data which is GNSS position time series of 

4 CORS stations in Vietnam, then the estimated velocity of these stations: DANA (n, e, u = -9.5, 31.5, 1.5 

mm/year), HCMC (n, e, u = -9.5, 26.2, 1.9 mm/year), NADI (n, e, u = -10.6, 31.5, -13.4 mm/year), and 

NAVI (n, e, u = -13.9, 32.8, -1.1 mm/year) is similar to previous studies. 
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1. Introduction 

Monitoring the Earth's crust deformation, land deformation using continuous GNSS (Global 

Navigation Satellite System) stations is now very popular in the world, greatly contribute to the prediction 

and early warning of seismic activities (e.g., earthquakes, landslides) in the US [1, 2], Japan [3, 4], Taiwan 

[5], etc. 

Continuous GNSS observation allows the calculation of the position time series of GNSS stations. The 

most basic application of GNSS position time series is in geotectonic studies, such as determining the 

rates of crustal motion, the seismic displacement, the co-seismic deformation, and the postseismic 

deformation [6]. Additionally, GNSS position time series are also useful in calculating amplitudes and 

phases of periodic motions caused by seasonal mass loads; for example, atmospheric, hydrological, or 

oceanic [7], etc. 

Then, the study of GNNS position time series processing in order to determine the most accurate 

information in the time series such as displacement velocity, seasonal motions, postseismic deformation 

of the Earth’s surface at the continuous GNSS station is very important for the applications mentioned 

above. 

In the processing of the position time series of continuous GNSS station by geodetic approach, the 

synthetic motion model is often used as a geometric model according to the 3-D coordinate components 

(XYZ) or (n,e,u) [8]. These geometric models need the parameters describing the basic and the most 

common motions of the coordinate time series, which are the linear trend, seasonal terms, possibly 

jumps/offset, and post-seismic deformations. The simpler the model of the position time series, the faster 

the computation, but the accuracy of the velocity estimated is noticeably reduced, especially with complex 

position time series. 

Using a geometric model with only one linear trend in position time series processing is also common 

such as [9] in determining the crustal motion in Vietnam and in the surrounding area by continuous GPS, 

[10] in determining the horizontal displacement of the Earth's crust in the Northwest region of Vietnam 

by cycle measurement GPS, etc. However, this model does not fully describe the nonlinear motions and 

discontinuities in the time series used for these studies leading to the estimated velocity field not being 

accurate. 

The geometric model, including linear trend, seasonal motion, and offsets, has been used by [11] to 

study the effects of the GPS position time series caused by higher-order ionospheric corrections. Similarly, 
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[12] has also used this model to research the accuracy of the velocity of continuous GPS station, and [13] 

used it in detecting the jumps automatically in the GPS time series, etc. This model is only suitable for 

these position time series used in those studies; however, in the case of analyzing complex time series, a 

synthetic model is needed. 

This paper proposes an approach to process GNSS position time series using a synthetic geometric 

model including linear trend, the seasonal term (annual and semiannual), jumps, and post-seismic 

deformation, which is suitable for most GNSS position time series cases. This model has also been used 

in programming the GNSS position time series analyzing software [14, 15], in the study of seismic 

deformation by GPS [16]. In this way, the time decay of postseismic deformation is estimated directly on 

the GNSS position time series, from which it is possible to determine the best fit line of time series. It 

means that the velocity, parameters of seasonal term, the amplitude of jumps, postseismic movements are 

estimated the most accurately. Moreover, the tool was written by Python 3 to analyze these data and further 

results. This tool has been tested with the synthetic model position time series and is used to analyze the 

real position time series of 4 CORS (Continuously Operating Reference Station) stations in Vietnam. 

 

2. Proposed methodology for GNSS time series analyzing 

2.1 General geometric model of GNSS time series  

GNSS position time series represents the temporal evolution of a point in the 3-D space in the geocentric 

coordinate system (X, Y, Z) or local geodetic coordinate system (north - n, east - e, up - u). In other words, 

the GNSS position time series represents the time variation of the coordinates of the GNSS station. 

Continuous GNSS stations are built on the land surface, so it is also affected by land surface changes 

such as displacement, periodic movement due to changes in groundwater levels, geo-tidal, etc., by 

geotectonic activities such as earthquakes. These influences are evident in the position time series of the 

GNSS station. 

The simplest geometric model for a position time series in terms of coordinate components n, e, u is a 

linear trend [8]: 

( ) ii iy t a bt v= + +        (1) 

Where 
it  is the time of the series positions in a decimal year, a is the initial position at time reference, 

b is the linear velocity, and v is the measurement errors. 

The more common model is a linear trend with the addition of seasonal term (includes annual and semi-

annual periodic motion) and jumps in the equation (1) [12, 17, 18], the seasonal term and jumps are 

described in the square brackets ([]): 

1

( ) [ ] [ sin(2 ) cos(2 ) sin(4 ) cos(4 )] [ ( - )]
g

i

n

i i i i i i j i gj
j

y t a bt c t d t e t f t g H t T v   
=

= + + + + + + +   (2) 

Where c, d, and e, f are harmonic components of annual motion and semi-annual motion, respectively.

jg is the magnitude of jumps at time 
jgT ( gn is the number of jumps). Heaviside function ( - ) 0i gjH t T =  if 

i gjt T  and ( - ) 1i gjH t T =  if 
i gjt T . 

A jump (step or offset) in the position time series is a sudden change in the mean coordinates [18], which 

can occur one or many times in a GNSS position time series at different times with various magnitudes. 

The cause of the jumps is probably GNSS receiver changes or receiver’s firmware update [19], or 

geophysical phenomena such as land subsidence, earthquakes [17]. 

The seasonal term is sinusoidal motions with periods of 12 months (annual motion) and six months 

(semi-annual motion). This is due to cyclical changes over time, such as the effect of the continental water 

storage loading [20], or the effect of seasonal change of groundwater level [3], etc. 

The general geometric model proposed for the GNSS position time series is equation (2) with the 

addition of the post-seismic motion [8, 14, 15]: 
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Where 
jh is rate change after an earthquake at the time hjT  ( hn is the number of rate changes). 

jk is the 

magnitude of postseismic relaxation at time kjT ( kn is the number of postseismic).  is decay time 

(relaxation time) of postseismic deformation in the decimal year. 

Thus, the parameters of the general geometric model of GNSS position time series are a, b, c, d, e, f, 

( 1 )gjg j n=  , ( 1 )hjh j n=  and ( 1 )kjk j n=  . 

In equation (3), the postseismic deformations that occur after the jumps of earthquakes are described in 

the square brackets ([]), which includes the rate changes (change in both direction and value) and post-

seismic relaxation (described as an exponential decay function with magnitude and decay time). 

The GNSS position time series record the seismic, co-seismic, inter-seismic, and postseismic relaxation 

[21]. Postseismic relaxation can last for years or more. In addition, after an earthquake, the rate of 

displacement of the GNSS station can change in both direction and value. The earthquake jumps and 

postseismic relaxations depend on the epicenter, earthquake's magnitude, and the distance between the 

epicenter to GNSS station [8]. 

2.2. Determining the parameters of GNSS position time series 

Assuming that the times gjT of jumps, hjT of rate changes, and kjT of postseismic relaxation are known. 

Model (3) is linear with respect to the parameters: 

1 1 1[ ... ... ... ]T

ng nh nkx a b c d e f g g h h k k=    (4) 

So that 

y Ax v= +        (5) 

Where A  is the design matrix, 
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v  is a vector of residual position time series, 

     1 2 ...
T

nv v v v=       (7) 

and y is a vector of position time series, 
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1 2[ ( ) ( ) ... ( )]T

ny y t y t y t=      (8) 

The positions in the series are independent observations, then the observation covariance matrix is 

defined by individual variances 
i of the position i: 

    2 2 2

1 2( ... )nC diag   =       (9) 

The least square for the best linear unbiased estimates of the parameters is: 

    1 1 1( ) ( )T Tx A C A A C y− − −=        (10) 

With parameter covariance: 

    1( )T

xi diag A C A  −=        (11) 

Where  is weighted root mean square error: 

    
1

( )

Tv C v

n dim x


−

= 
−

      (12) 

From equation (5), the modelled postions (predicted position) are: 

    y Ax=          (13) 

And residual positions are calculated as: 

    v Ax y= − +         (14) 

The amplitude, the phase of the annual and semi-annual motions are calculated from the parameters c, 

d, e, f [22]: 

2 2 1
; 2( )

2
ann ann

a
A a b atan

b



= + =      (15) 

2 2 1
; 2( )

4
semi ann semi ann

c
A c d atan

d



− −= + =     (16) 

The flowchart describes the process of calculating and analyzing the GNSS position time series in Fig. 1. 

 

 

Fig. 1. Flowchart of determining the parameters of GNSS position time series. 
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In the flowchart (Fig. 1), among the input coefficients for calculation, the decay time (relaxation time) 

of postseismic deformation τ is known. This coefficient is proposed by estimating directly from the time 

series and presented in the following section 2.3. 

The program has been developed for analyzing GNSS position time series in Python, named pygps_ts 

(GPS time series by Python), which uses the method described above. Pygps_ts helps to solve the most 

common problems of time series quickly and accurately. 

2.3 Determining the time decay of postseismic deformation 

The postseismic relaxation time (decay time) is usually determined based on seismic models [23], or the 

physical process seismicity, or by Omori's law [24, 25]. In this paper, we propose a method to calculate the 

decay time directly from the position time series based on the equation of the general geometric model (3). 

τ is iteratively calculated in 2 steps: 

First step, choosing the initial value τ0 (here, we choose τ0 = 0.0027 yr, equivalent to 01 day [15]). 

Substituting τ0 and 𝑇𝑗 (time known 𝑇𝑗 of seismic jumps) into equation (3) and solving the solution vector: 

   0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1[ ... ... ... ]T

ng nh nkx a b c d e f g g h h k g=     (17) 

Next in this step, splitting equation (3) into two parts: part one includes the seismic jumps, rate changes, 

and postseismic displacement; and the other one includes the remaining parameters. These two parts are 

distinguished in the sign {} in Equation 18. 
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 (18) 

With parameters , , , ( 1 )j j j j kg h k j n =  as unknowns, linearizing equation (18) with partial derivatives 

with respect to unknowns: 
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The system of equations (18) in matrix form: A y =       (21) 

Where, 

 Unknown vector: 
1 1 1 1[ ... ... ... ... ]

k k k k

T

n n n ng g h h k k   =           (22) 

 Vector of free coefficient: 
1[ '( ) ... '( )]T

ny y t y t=       (23) 

 And design matrix A  as equation (24). 

Then, the unknown vector   is esimated using least squares estimation: 

    1 1 1( ) ( )T TA C A A C y− − − =       (25) 

Second step, calculating the decay time τ in the next iteration i: 

    1i i

j j j  −= +         (26) 

The iterative process stops when the maximum of ∂τj is less than the threshold value, and therefore, 

convergence is achieved. In practice, we choose the threshold value at 0.003 yr [15]. 

The process of calculating the decay time of postseismic deformation is summarized in the flowchart 

Fig. 2. 
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Fig. 3. Flowchart of determining the decay times of postseismic deformation. 
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In pygps_ts script, we have programmed the τ determination module using this algorithm which will be 

used if the input data has the times of seismic jumps. 

3. Study data and result 

3.1 Synthetic data model 

It is examined that the performance of this algorithm by a synthetic model produced as a north 

component of the daily position time series of the GNSS station named SYNT (it mean synthetic) for the 

period 2015.0-2021.0. 

The synthetic model coordinate time series of SYNT is introduced: seasonal motion, coseismic jump at 

2018.0, and postseismic relaxation, whose coefficients/parameters are in Tab. 1. Then, this model time 

series is perturbed by the Normal distribution law σ = 1.0 mm to create the time series of random coordinates 
which are illustrated as blue points in Fig. 3 on the left. 

Using pygps_ts to process SYNT’s coordinate time series, the estimated parameters are obtained and 

shown in Tab. 1. In addition, the predicted and residual coordinate time series are shown in Fig. 3. Note 

that the number of iterative estimations of decay time τ is 4, and the processing duration is small, only 

seconds. 

Tab. 1. Comparison of synthetic model and estimated parameters. 

Parameters 

Linear trend Seasonal motion Seismic motion 

Initial 

position 

Velocity 

 
Annual motion 

Semi-annual 

motion 
Jump 

Rate 

change 

Amplitude 

postseismic 

relaxation  

Decay 

time 

a 

(m) 

b 

(m/yr) 

c 

(m) 

d 

(m) 

e 

(m) 

f 

(m) 

g 

(m) 

h 

(m/yr) 

k 

(m) 

τ 

(yr) 

Model -0.0050 -0.0010 -0.0002 0.0003 -0.0010 -0.0020 0.0800 0.0100 -0.0500 0.0250 

Estimation -0.0051 -0.0100 -0.0002 0.0003 -0.0010 -0.0020 0.0803 0.0099 -0.0503 0.0249 

Difference 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0003 0.0001 0.0003 0.0001 

  

Tab. 1 shows that the parameters estimated by using pygps_ts are almost equal to the given parameters 

of the model time series. The difference between them is mainly in the parameters of seismic motion but is 

considered insignificant. 

  

Fig. 3. SYNT’s coordinate time series.  

In Fig. 3 on the left, the red line (fit line) is the predicted coordinate time series (the correct value of 

coordinates), while the blue points are the “measurement” coordinate time series. The red line is completely 

correct with the synthetic model; this line describes the synodal seasonal motion, the seismic jump at 

2018.0, and the postseismic relaxation (with decay time τ = 0.25 year and rate change 9.9 mm/year). Fig. 3 

on the right is the residual coordinate time series (after the estimated trend, estimated jump, and estimated 

postseismic relaxation have been removed) with wrms = 1.0 mm, exactly equal to the error σ introduced in 

the data model. 
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The test result and also our processing results in practice have proved that the proposed geometric model, 

method, and pygps_ts program for processing GNSS position time series are appropriate and ensure 

accuracy. 

3.2 Some CORS stations in Vietnam 

GNSS CORS stations are not only used as a control network for surveying services [26] but also widely 

used in tectonic plate movement monitoring [27,28], in landslide monitoring [29] (landslide due to mining 

is regularly monitoring in Quang Ninh [30,31]), etc. This study processes the GNSS position time series of 

4 CORS stations in Vietnam: NAVI (Ha Noi), NADI (Nam Dinh), DANA (Da Nang), and HCMC (Ho Chi 

Minh), which are actual data to verify the algorithm and pygps_ts program. 

These CORS stations measure continuously from January 2016 to December 2018, of which 3 stations 

(DANA, HCMC, and NADI) are designed and operated by Tuong Anh Science and Technology Equipment 

Joint Stock Company, and one station (NAVI) belongs to The Japan Aerospace Exploration Agency 

(JAXA). The data of these CORS stations has been [32] processed by the PPP method using PPPC (Precise 

Point Positioning by using C language software) software to obtain the position time series.  

The pygps_ts is used to process the position time series of these 4 CORS stations. The estimated 

parameters of all these time series only have the linear trend and the seasonal motion according to the 3-D 

coordinate components n, e, u, but no jumps, no postseismic deformation (illustrated in Fig. 4). The 

estimated parameters and their accuracy are shown in Tab. 2. 

From the estimated parameters describing the seasonal motion, pygps_ts calculates the phase and 

amplitude of annual and semi-annual motions are shown in Tab. 3. 

Tab. 2. Estimated parameters and their accuracy. 

Station Component 
Estimated parameters of a geometric model of position time series 

     a (m)   B (m/yr)      c (m)      d (m)         e (m)       f (m) 

DANA 

n -0.0010 -0.0095 0.0017 -0.0002 0.0000 -0.0002 

 ±0.0001 ±0.0002 ±0.0002 ±0.0001 ±0.0001 ±0.0001 

e 0.0047 0.0315 0.0016 -0.0005 0.0008 0.0016 

 ±0.0002 ±0.0003 ±0.0003 ±0.0002 ±0.0002 ±0.0002 

u 0.0017 0.0015 0.0034 -0.0067 -0.0001 0.0029 

 ±0.0004 ±0.0008 ±0.0007 ±0.0006 ±0.0005 ±0.0005 

HCMC 

n -0.0058 -0.0095 0.0006 -0.0028 -0.0003 -0.0004 

 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002 

e 0.0160 0.0262 0.0003 -0.0010 0.0011 0.0001 

 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002 

u 0.0020 0.0019 0.0057 -0.0057 0.0006 -0.0002 

 ±0.0004 ±0.0004 ±0.0005 ±0.0005 ±0.0004 ±0.0004 

NADI 

n -0.0054 -0.0106 0.0004 -0.0015 0.0008 -0.0009 

 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002 

e 0.0181 0.0315 0.0001 -0.0017 0.0006 0.0000 

 ±0.0001 ±0.0002 ±0.0001 ±0.0001 ±0.0001 ±0.0001 

u -0.0059 -0.0134 0.0035 -0.0062 -0.0005 0.0010 

 ±0.0004 ±0.0006 ±0.0004 ±0.0004 ±0.0004 ±0.0004 

NAVI 

n -0.0143 -0.0139 0.0006 -0.0028 0.0001 -0.0010 

 ±0.0002 ±0.0002 ±0.0002 ±0.0001 ±0.0001 ±0.0001 

e 0.0340 0.0328 0.0006 0.0002 0.0009 -0.0002 

 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0001 

u -0.0013 -0.0011 0.0038 -0.0086 -0.0008 0.0029 

 ±0.0006 ±0.0005 ±0.0004 ±0.0004 ±0.0004 ±0.0004 
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Tab. 3. Amplitude and phase of seasonal motion. 

Station Component 
Annual motion Semi-annual motion 

A (mm) φ (year) A (mm) Φ (year) 

DANA 

n 1.66 0.30 1.77 0.04 

e 1.70 0.26 0.20 0.23 

u 7.46 0.43 2.91 0.00 

HCMC 

n 1.01 0.45 1.13 0.11 

e 2.81 0.47 0.54 -0.20 

u 8.09 0.38 0.58 0.15 

NADI 

n 1.72 0.49 0.62 0.13 

e 1.61 0.46 1.22 0.19 

u 7.13 0.42 1.12 -0.04 

NAVI 

n 0.65 0.21 0.92 0.14 

e 2.89 0.46 0.97 0.25 

u 9.39 0.43 2.96 -0.02 

The position time series, the fit line, and the residual position time series of 4 CORS stations are 

shown in Fig. 4.  
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Fig. 4. GNSS position time series of 4 CORS station. 

Fig. 4 on the left presents the measurement coordinate time series (blue point) and estimated coordinate 

time series (red line) according to 3-D coordinate components n, e, u. The estimated coordinate time series 

are accurate, presented by a fit line with the measured coordinate series, and the wrms is tiny, about 2.0 ~ 

3.0 mm for the horizontal components (n, e) and 6.6 ~ 7.4 mm for the vertical components. Fig. 4 presents 

the residual coordinate time series on the right after calculating and removing the velocity and seasonal 

motion. 

The displacement velocities of the CORS stations are estimated with high accuracy, about tenths of a 

millimeter, shown in Tab. 3 (column of parameter b). The velocity field of 4 CORS stations is presented in 

Fig. 5 (also created by pygps_ts). 

The displacement velocity and its accuracy according to the coordinate components of the CORS 

stations DANA is n, e, u = -9.5±0.2, 31.5±0.3, 1.5±0.8 mm/year, HCMC is n, e, u = -9.5±0.2, 26.2±0.2, 

1.9±0.4 mm/year, NADI is n, e, u = -10.6±0.2, 31.5±0.2, -13.4±0.6 mm/year and NAVI is n , e, u = -

13.9±0.2, 32.8±0.2, -1.1±0.5 mm/year. Thus, CORS stations move an average of 3-4cm/year in the East-

South direction (e.g. Fig. 5). 
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Fig. 5. Velocity field of 4 CORS stations in Vietnam in this study. 

 

4. Discussions and conclusions 

The general geometric model mentioned in this study includes common motion phenomena such as 

linear trend, seasonal motion (including annual and semi-annual displacement), jumps, and postseismic 

deformations (including rate change and postseismic relaxation) is the complete model for GNSS position 

time series. However, it is rare that the transient deformation is recorded in the GNSS position time series 

in areas with complex geotectonic activities such as American Basin and Range [33], Guerrero Mexico 

[34], etc. Transient deformation is defined as a nonperiodic, nonsecular accumulation of strain in the crust 

[35], so it is difficult to model geometry like other motions. Note that this phenomenon has not been 

recorded in GNSS station Vietnam; therefore, it is not mentioned in this paper. 

To calculate the magnitude of jumps in the position time series, it is necessary to provide the time of the 

jumps. The study of automatically determining the jump has also been researched [13, 15] but needs to be 

improved and examined more closely. 

The proposed method of determining the decay time directly from the coordinate time series allows a 

more accurate description of postseismic deformation. This method’s algorithm is programmed in Python, 

allowing fast and accurate calculations with the data model. However, the GNSS position time series of 

CORS stations in Vietnam do not record postseismic deformation to verify the method. Therefore, it needs 

to be tested with real complex data to improve the method as well as the pygps_ts program. 

The general geometric model of the GNSS position time series describes most of the common motions, 

which is true for most of the position time series in the study of land surface deformation, crustal 

deformation due to seismic, mining, etc. The calculating results of 4 CORS stations in Vietnam are highly 

accurate, and the processing time is fast because the data of these CORS stations are quite "beautiful". In 

the upcoming time, the study will be conducted with more CORS station data in Vietnam. 

The estimated velocity field of 4 CORS stations: DANA (n, e, u = -9.5, 31.5, 1.5 mm/year), HCMC (n, 

e, u = -9.5, 26.2, 1.9 mm/year), NADI (n, e, u = -10.6, 31.5, -13.4 mm/year) and NAVI (n, e, u = -13.9, 
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32.8, -1.1 mm/year) is similar to the study's results of [32]. 

Vietnam is in the process of building and developing continuous GNSS networks for geotectonic study, 

surveying services, etc. the study of methods of processing GNSS position time series is essential to 

promote the role of GNSS networks in science and practical applications. 
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