PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical orbit determination algorithm for satellites in Indian navigation constellation (NavIC): towards extended ephemeris technology for NavIC receiver

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ephemerides are essential for the satellite positioning in Global Navigation Satellite Systems (GNSS) user receivers. Acquisition of navigation data and ephemeris parameters are difficult in remote areas as well as in challenging environments. Statistical orbit determination techniques can help to predict the orbital parameters in the absence of navigation data. The present study is a first step towards the solution for generating orbital parameters and predicting the satellite positions in the absence of navigation data for satellites in NavIC constellation. The orbit determination algorithm predicted the satellite position using single station navigation data. The perturbations affecting the satellite orbits in NavIC constellation were also studied and an algorithm using perturbation force models is proposed for the satellites in NavIC constellation. Extended Kalman Filter (EKF) was used to address the non-linear dynamics model of the perturbation forces and distance of the ground station from the centre of Earth was used as measurement to solve the measurement equation. The satellite orbits were predicted up to 1 hour using the single station navigation data. The root mean square error (RMSE) of 12.59 m and 13.03 m were observed for NavIC satellites in Geosynchronous and Geostationary orbits, respectively, after 1 hour. The Kolmogorov-Smirnov test used to assess the goodness of fit of the proposed EKF algorithm for orbit prediction was found to be significant at 1% level of significance.
Rocznik
Strony
29--40
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Department of Statistics & Centre for Advanced Studies Savitribai Phule Pune University, Pune 411 007, India
  • Department of Statistics & Centre for Advanced Studies Savitribai Phule Pune University, Pune 411 007, India
  • Space Applications Centre (ISRO), Ahmedabad 380015, India
Bibliografia
  • Aghav, S. and Gangal, S. (2014) Simplified orbit determination algorithm for low earth orbit satellites using space-borne GPS navigation sensor, Artificial Satellites, Vol. 49, No. 2, 81-99.
  • Beutler, G. and Mervart, L. (2010) Methods of Celestial Mechanics. Vol. 1: Physical, Mathematical, and Numerical Principles, Springer Verlag, Berlin.
  • Carolipio, E. M., Pandya, N. K., Grewal, M. S. (2002) GEO orbit determination via covariance analysis with a known clock error, Navigation, Vol. 48, No. 4, 255-260.
  • Chobotov, V. A. (2002) Orbital Mechanics, 3rd Ed., AIAA, Virginia.
  • Chandrasekhar, M. V., Rajarajan, D., Satyanarayana, G., Tirmal, N., Rathnakara, S. C., Ganeshan, A. S. (2015) Modernized IRNSS broadcast ephemeris parameters, Control Theory and Informatics, Vol. 5, No. 2, 1-9.
  • Hein, G. W., Eissfeller B. (1997) Orbit determination of geosynchronous satellites of a European satellite navigation system (ENSS), Proc. 12th Int. Sym. “Space Flight Dynamics”, 59-64.
  • Kavitha, S., Mula, P., Babu, R., Ratnakara, S. C., Ganeshan, A.S. (2015) Adaptive extended Kalman filter for orbit estimation of GEO satellites, Journal of Environment and Earth Science, Vol. 5, No.3, 1-10.
  • Mashiku, A. K., Garrison, J. L., Carpenter, J. R. (2012) Statistical orbit determination using the particle filter for incorporating non-Gaussian uncertainties, AIAA Astrodynamics Specialist Conference, August 13-16, Minneapolis, Minnesota.
  • Mashiku, A. K. (2013) Information Measures for Statistical Orbit Determination, Ph. D. Dissertation, Purdue University, Indiana.
  • Misra P. and Enge P. (2001) Gloabal Positioning System, Signals, Measurements and Performance, Ganga-Jamuna Press, Lincoln, Massachusetts.
  • Seppanen, M., Perala, T., Piche, R. (2011) Autonomous satellite orbit prediction, Proceedings of the 2011 International Technical Meeting of The Institute of Navigation, 554-564.
  • Shou, H. (2014) Orbit propagation and determination of low earth orbit satellites, International Journal of Antennas and Propagation, Article ID 903026.
  • Stacey, P. and Ziebart, M. (2011) Long-term extended ephemeris prediction for mobile devices, ION-GNSS, 3235-3244.
  • Tapley, B., Schutz, B., Born, G. (2004) Statistical Orbit Determination, Elsevier, New York.
  • Vallado, D., McClain, W. (2007) Fundamentals of Astrodynamics and Applications, 3rd ed., Microcosm Press, Canada.
  • Zaminpardaz, S., Teunnissen, P. J. G., Nadarajah, N. (2017) Single-frequency L5 attitude determination from IRNSS/NavIC and GPS: a single and dual-system analysis, Journal of Geodesy, Vol. 91, 1415-1433.
  • Zhang, W., V. Vijay, Liu H., Phatak, M., Han, S. (2008) SiRF InstantFix II Technology, ION GNSS, Vol. 3, 1616-1623.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5305a866-6bab-4088-b213-c96adb03cbfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.