PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Limit states of steel supporting structure for bridge cranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes a question of evaluation necessity of bridge cranes using the method of limit deformation state and oscillation damping. The solution was performed by means of theoretical analysis and an experimental verification at the selected bridge crane. The final result sounds that in the case of a correct strength computing of given bridge crane, it is not necessary to also check deformation and damping of oscillation as well.
Słowa kluczowe
Rocznik
Tom
Strony
141--158
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 9 Street, 042 00 Košice, Slovak Republic
autor
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 9 Street, 042 00 Košice, Slovak Republic
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 9 Street, 042 00 Košice, Slovak Republic
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 9 Street, 042 00 Košice, Slovak Republic
  • Faculty of Mechanical Engineering, Institute of Transport, Technical University of Ostrava, 17. listopadu 15/2172 Street, 708 33 Ostrava-Poruba, Czech Republic
Bibliografia
  • 1.He Wei. 2018. „Vertical dynamics of a single-span beam subjected to moving masssuspended payload system with variable speeds”. Journal of Sound and Vibration 418: 36-54. ISSN: 0022-460X. DOI: https://doi.org/10.1016/j.jsv.2017.12.030.
  • 2. Michaltsos George, Dimitrios Sophianopoulos, Anthony Kounadis. 1996. „The effect of a moving mass and other parameters on the dynamic response of a simply supported beam”. Journal of Sound and Vibration 191(3): 357-362. ISSN: 0022-460X. DOI: https://doi.org/10.1006/jsvi.1996.0127.
  • 3. Wu Jia-Jang. 2005. „Dynamic analysis of an inclined beam due to moving loads”. Journal of Sound and Vibration 288(1-2): 107-131. ISSN 0022-460X. DOI: https://doi.org/10.1016/j.jsv.2004.12.020.
  • 4. Fodor Szabol, Carlos Vázquez, Leonid Freidovich, Nariman Sepehri. 2016. „Towards oscillation reduction in forestry cranes”. BATH/ASME 2016 Symposium on Fluid Power and Motion Control. University of Bath, UK. 7-9 september 2016, Bath, UK. ISBN: 978-07918-5006-0. DOI: https://doi.org/10.1115/FPMC2016-1792.
  • 5. Hussien Sharifah Yuslinda Syed, Rozaimi Ghazali, Hazriq Izzuan Jaafar, Chong Chee Soon. 2016. „Analysis of 3D gantry crane system by PID and VSC for positioning trolley and oscillation reduction”. Journal of Telecommunication, Electronic and Computer Engineering 8(7): 139-143. ISSN: 2180-1843.
  • 6. Masoud Ziyad N. 2007. „Oscillation control of quay-side container cranes using cablelength manipulation”. Journal of Dynamic Systems, Measurement and Control 129(2): 224-228. ISSN: 0022-0434. DOI: https://doi.org/10.1115/1.2432362.
  • 7. Hu Youmin, Bo Wu, Joshua C. Vaughan, WilliamE. Singhose. 2013. „Oscillation suppressing for an energy efficient bridge crane using input shaping”. 9th Asian Control Conference (ASCC 2013). IEEE Advancing Technology for Humanity. 23-26 June 2013. Istanbul, Turkey. ISBN: 978-1-4673-5767-8. DOI: http://doi.org/10.1109/ASCC.2013.6606196.
  • 8. Chen Yung-Feng, An-Chyau Huang. 2014. „Oscillation reduction for overhead cranes with time-varying payload and rope length“. Journal of the Chinese Institute of Engineers 37(2): 259-267. ISSN: 0253-3839. DOI: https://doi.org/10.1080/02533839.2012.757049.
  • 9. Singhose William, Dooroo Kim, Michael Kenison. 2008. „Input shaping control of double-pendulum bridge crane oscillations”. Journal of Dynamic Systems, Measurement, and Control 130(3). ISSN: 0022-0434. DOI: http://doi.org/10.1115/1.2907363.
  • 10. Kiviluoto Sami, Lasse Eriksson, Heikki N. Koivo. 2015. „Modelling and control of vertical oscillation in overhead cranes”. American Control Conference: 1290-1295. AACC American Automatic Control Council. 1-3 July 2015. Chicago, Illinois. ISBN: 978-1-4799-8685-9.
  • 11. Zrnic Nenad Dj, Vlada M. Gašic, Srdjan M. Bošnjak. 2015. „Dynamic response of a gantry crane system due to a moving body considered as moving oscillator”. Archives of Civil and Mechanical Engineering 15(1): 243-250. ISSN: 1644-9665. DOI: https://doi.org/10.1016/j.acme.2014.02.002.
  • 12. Gašic Vlada, Nenad Zrnic, Aleksandar Obradovič, Srdan Bošnjak. 2011. „Consideration of moving oscillator problem in dynamic responses of bridge crane”. FME Transactions 39(1): 17-24. ISSN: 1451-2092. DOI: https://doi.org/10.1016/j.acme.2014.02.002.
  • 13. Jaafar Hazriq Jaafar, Z. Mohamed, J.J. Jamian, Amar Faiz Zainal Abidin, Anuar Mohamed Kassim, Z. Ab Ghani. 2013. „Dynamic behaviour of a nonlinear gantry crane system”. Procedia Technology 11: 419-425. ISSN: 1877-7058. DOI: http://doi.org/10.1016/j.protcy.2013.12.211.
  • 14. Hu Youmin, Bo Wu, Joshua Vaughan, Willam E. Singhose. 2013. „Oscillation suppressing for an energy efficient bridge crane using input shaping”. 9th Asian Control Conference (ASCC). Asian Control Association. 23 June 2013 Istanbul, Turkey. ISBN: 978-1-4673-5767-8. DOI: http://doi.org/10.1109/ASCC.2013.6606196.
  • 15. Padula Fabrizio, Antonio Visioli, Domenico Facchinetti, Alberto Saleri. 2015. „A dynamic inversion approach for oscillation-free control of overhead cranes”. 20th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2015): 337-343. IEEE Industrial Electronics Society (IES). 08-11 September 2015, Luxembourg City, Luxembourg. ISBN: 978-1-4673-7930-4.
  • 16. Ece Mehmet Cem, Metin Aydogdu, Vedat Taskin. 2007. „Vibration of a variable crosssection beam”. Mechanics Research Communications 34(1): 78-84. ISSN: 0093-6413. DOI: http://doi.org/10.1016/j.mechrescom.2006.06.005.
  • 17. Grega Robert, Jozef Krajňák, Lucia Žuľová, Gabriel Fedorko, Vieroslav Molnár. 2017. „Failure analysis of driveshaft of truck body caused by vibrations”. Engineering Failure Analysis 79: 208-215. ISSN: 1350-6307. DOI: https://doi.org/10.1016/j.engfailanal.2017.04.023.
  • 18. Czech P. 2013. “Diagnosing a car engine fuel injectors' damage”. Communications in Computer and Information Science 395: 243-250. DOI: https://doi.org/10.1007/978-3-642-41647-7_30. Springer, Berlin, Heidelberg. ISBN: 978-3-642-41646-0; 978-3-642-41647-7. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Activities of transport telematics, 13th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 23-26, 2013.
  • 19. Czech P. 2012. “Determination of the course of pressure in an internal combustion engine cylinder with the use of vibration effects and radial basis function – preliminary research”. Communications in Computer and Information Science 329: 175-182. DOI: https://doi.org/10.1007/978-3-642-34050-5_21. Springer, Berlin, Heidelberg. ISBN: 978-3-642-34049-9. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Telematics in the transport environment, 12th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 10-13, 2012.
  • 20. Haniszewski Tomasz. 2017. „Modeling the dynamics of cargo lifting process by overhead crane for dynamic overload factor estimation”. Journal of Vibroengineering 19(1): 75-86. DOI: 10.21595/jve.2016.17310. ISSN: 1392-8716.
  • 21. Gąska Damian, Tomasz Haniszewski. 2016. “Modelling studies on the use of aluminium alloys in lightweight load-carrying crane structures”. Transport Problems 11(3): 13-20. DOI: 10.20858/tp.2016.11.3.2. ISSN: 1896-0596.
  • 22. Haniszewski Tomasz, Damian Gaska. 2017. “Numerical modelling of I-Beam jib crane with local stresses in wheel supporting flanges - influence of hoisting speed”. Nase More 64(1): 7-13. DOI: 10.17818/NM/2017/1.2. ISSN: 0469-6255.
  • 23. Kosicka E., Kozłowski E., Mazurkiewicz D. 2015. „The use of stationary tests for analysis of monitored residual processes”. Eksploatacja i Niezawodnosc – Maintenance and Reliability 17(4): 604-609. DOI: http://dx.doi.org/10.17531/ein.2015.4.17.
  • 24. Mazurkiewicz D. 2014. „Computer-aided maintenance and reliability management systems for conveyor belts”. Eksploatacja i Niezawodnosc – Maintenance and Reliability 16(3): 377-382.
  • 25. Mazurkiewicz D. 2010. „Tests of extendability and strength of adhesive-sealed joints in the context of developing a computer system for monitoring the condition of belt joints during conveyor operation”. Eksploatacja i Niezawodnosc – Maintenance and Reliability 3: 34-39.
  • 26. Czech P. 2011. “Diagnosing of disturbances in the ignition system by vibroacoustic signals and radial basis function - preliminary research”. Communications in Computer and Information Science 239: 110-117. DOI: https://doi.org/10.1007/978-3-642-24660-9_13. Springer, Berlin, Heidelberg. ISBN: 978-3-642-24659-3. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Modern transport telematics, 11th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 19-22, 2011.
  • 27. Czech Piotr. 2011. „An intelligent approach to wear of piston-cylinder assembly diagnosis based on entropy of wavelet packet and probabilistic neural networks”. Communications in Computer and Information Science 239: 102-109. DOI: https://doi.org/10.1007/978-3-642-24660-9_12. Springer, Berlin, Heidelberg. ISBN: 978-3-642-24659-3. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Modern transport telematics, 11th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 19-22, 2011.
  • 28. Bajkowski Jacek Mateusz, Bartlomiej Dyniewicz, Czeslaw I. Bajer. 2015. „Damping properties of a beam with vacuum-packed granular damper”. Journal of Sound and Vibration 341: 74-85. ISSN: 0022-460X. DOI: https://doi.org/10.1016/j.jsv.2016.05.006.
  • 29. Balamurugan Varadarajan, Sadagopan Narayanan. 2002. „Active-pasive hybrid damping in beams with enhanced smart constrained layer treatment”. Engineering Structures 24(3): 355-363. ISSN: 0022141-0296. DOI: https://doi.org/10.1016/S0141-0296(01)00101-8.
  • 30. Blackbur D., W. Singhose, J. Kitchen, V. Patrangenaru, J. Lawrence, T. Kamoi, A. Taura. 2010. „Command shaping for nonlinear crane dynamics”. Journal of Vibration and Control 16(4): 477-501. ISSN 1077-5463. DOI: http://doi.org/10.1177/1077546309106142.
  • 31. Tweten Denis. J., Zach Ballard, Brian P. Mann. 2014. „Minimizing error in the logarithmic decrement method through uncertainty propagation”. Journal of Sound and Vibration 333(13): 2804-2811. ISSN: 0022-460X. DOI: https://doi.org/10.1016/j.jsv.2014.02.024.
  • 32. Magalas Leszek B., T. Malinowski. 2003. „Measurement techniques of the logarithmic decrement”. Solid State Phenomena 89: 247-260. ISSN: 1662-9779. DOI: https://doi.org/10.4028/www.scientific.net/SSP.89.247.
  • 33. Stanislawczyk A. 2006. „Advanced techniques for determining high and extreme high damping: OMI – a new algorithm to compute the logarithmic decrement”. Key Engineering Materials 319. ISSN: 1662-9795. DOI: https://doi.org/10.4028/www.scientific.net/KEM.319.231.
  • 34. Magalas Leszek B., Mariusz Majewski. 2015. „Hilbert-twin-a novel hilbert transformbased method to compute envelope of free decaying oscillations embedded in noise, and the logarithmic decrement in high-resolution mechanical spectroscopy HRMS”. Archives of Metallurgy and Materials 60(2): 1091-1098. ISSN: 1733-3490. DOI: 10.1515/amm-2015-0265.
  • 35. Lan Qingqun, Manicka Dhanasekar, Yunendar Aryo Handoko. 2019. „Wear damage of out-of-round wheels in rail wagons under braking”. Engineering Failure Analysis 102: 170-186. ISSN: 1350-6307. DOI: https://doi.org/10.1016/j.engfailanal.2019.04.019.
  • 36. STN 27 0103: 1989. Navrhování ocelových konstrukcí jeřábů. Výpočet podle mezních stavů. Praha. Úřad pro normalizaci a měření. [In Slovak: STN 27 0103: 1989. Design of Steel Crane Structures. Calculation According to Limit States. Praha. Czech Office for Standardisation and Measuring].
  • 37. DIN 15 018: 1984. Krane. Grundsätze für Stahltragwerke. Berechnung. Berlin. Deutsches Institut für Normung. [In German: DIN 15 018: 1984. Cranes. Steel Supporting Structures. Calculations. Berlin. German Institute for Standardisation].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52fdbef2-519d-4b0d-8b4c-d4e94768242d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.