Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We introduced a new general class of Prešić-type operators, by enriching the known class of Prešić contractions. We established conditions under which enriched Prešić operators possess a unique fixed point, proving the convergence of two different iterative methods to the fixed point. We also gave a data dependence result that was finally applied in proving the global asymptotic stability of the equilibrium of a certain k-th order difference equation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220185
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Faculty of Economics and Business Administration, Babeș-Bolyai University, T. Mihali 58-60, 400591 Cluj-Napoca
Bibliografia
- [1] S. B. Prešić, Sur une classe dainéquations aux différences finite et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd) (N.S.) 5 (1965), no. 19, 75–78.
- [2] M. Alansari and M. U. Ali, Interpolative Prešić type contractions and related results, J. Funct. Spaces. (2022), Art. ID 6911475, 10 pp.
- [3] D. Alecsa, Common fixed points for Prešić operators via simulation functions, J. Nonlin. Conv. Analysis 20 (2019), no. 3, 363–377.
- [4] F. S. Alshammari, K. P. Reshma, R. Rajagopalan, and R. George, Generalised Prešić type operators in modular metric space and an application to integral equations of Caratheodory type functions, J. Math. 2021 (2021), Art. ID 7915448, 20 pp.
- [5] I. Altun, M. Qasim and M. Olgun, A new result of Prešić type theorems with applications to second order boundary value problems, Filomat 35 (2021), no. 7, 2257–2266.
- [6] S. Batul, D. Sagheer, H. Aydi, A. Mukheimer, and S. S. Aiadi, Best proximity point results for Preǎić type nonself operators in b-metric spaces, AIMS Math. 7 (2022), no. 6, 10711–10730.
- [7] M. Păcurar, Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 17 (2009), no. 1, 153–168.
- [8] M. Păcurar, A multi-step iterative method for approximating common fixed points of Prešić-Rus type operators on metric spaces, Stud. Univ. Babeş-Bolyai Math. 55 (2010), no. 1, 149–162.
- [9] M. Păcurar, A multi-step iterative method for approximating fixed points of Prešić-Kannan operators, Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 1, 77–88.
- [10] V. Berinde and M. Păcurar, Two elementary applications of some Prešić type fixed point theorems, Creat. Math. Inform. 20 (2011), no. 1, 32–42.
- [11] M. Păcurar, Fixed points of almost Prešić operators by a k -step iterative method, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 57 (2011), suppl. 1, 199–210.
- [12] M. Păcurar, Common fixed points for almost Prešić type operators, Carpathian J. Math. 28 (2012), no. 1, 117–126.
- [13] M. Abbas, M. Berzig, T. Nazir, and E. Karapınar, Iterative approximation of fixed points for Prešić type F-contraction operators, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 78 (2016), no. 2, 147–160.
- [14] H. Aydi, E. Karapınar, and C. Vetro, Meir-Keeler type contractions for tripled fixed points, Acta Math. Sci. Ser. B (Engl. Ed.) 32 (2012), no. 6, 2119–2130.
- [15] Y.-Z. Chen, A Prešić type contractive condition and its applications, Nonlinear Analysis 71 (2009), no. 12, e2012–e2017 pp.
- [16] S. Stević, Asymptotic behavior of a class of nonlinear difference equations, Discrete Dyn. Nat. Soc. 2006 (2006), Art. ID 47156, 10 pp.
- [17] M. De la Sen and E. Karapinar, Best proximity points of generalized semicyclic impulsive self-mappings: applications to impulsive differential and difference equations, Abstr. Appl. Anal. (2013), Art. ID 505487, 16 pp.
- [18] M. Păcurar, Iterative Approximation of Fixed Points, Risoprint, Cluj-Napoca, 2009.
- [19] V. Berinde and M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl. 22 (2020), Paper no. 38, 10 pp.
- [20] V. Berinde, Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retraction-displacement condition, Carpathian J. Math. 36 (2020), no. 1, 27–34.
- [21] V. Berinde and M. Păcurar, Fixed point theorems for enriched Ćirić-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian J. Math. 37 (2021), no. 2, 173–184.
- [22] T. Kesahorm and W. Sintunavarat, On novel common fixed point results for enriched nonexpansive semigroups, Thai J. Math. 18 (2020), no. 3, 1549–1563.
- [23] A. Marchiş, Common fixed point theorems for enriched Jungck contractions in Banach spaces, J. Fixed Point Theory Appl.. 23 (2021), no. 4, Paper no. 76, 13 pp.
- [24] S. Suantai, D. Chumpungam and P. Sarnmeta, Existence of fixed points of weak enriched nonexpansive mappings in Banach spaces, Carpathian J. Math. 37 (2021), no. 2, 287–294.
- [25] S. Panja, M. Saha and R. Bisht, Existence of common fixed points of non-linear semigroups of enriched Kannan contractive mappings, Carpathian J. Math. 38 (2022), no. 1, 169–178.
- [26] R. Shukla and R. Panicker, Approximating fixed points of enriched nonexpansive mappings in geodesic spaces, J. Funct. Spaces 2022 (2022), Art. ID 6161839, 8 pp.
- [27] M. Abbas, R. Anjum, and H. Iqbal, Generalized enriched cyclic contractions with application to generalized iterated function system, Chaos Solitons Fractals. 154 (2022), Paper no. 111591, 9 pp.
- [28] A. Petruşel and I.A. Rus, Stability of Picard operators under operator perturbations, An. Univ. Vest Timiş. Ser. Mat.-Inform. 56 (2018), no. 2, 3–12.
- [29] J. Brzdȩk, E. Karapınar, and A. Petruşel, A fixed point theorem and the Ulam stability in generalized dq-metric spaces, J. Math. Anal. Appl. 467 (2018), no. 1, 501–520.
- [30] E. Karapınar and A. Fulga, An admissible hybrid contraction with an Ulam type stability, Demonstr. Math. 52 (2019), no. 1, 428–436.
- [31] A. Salim, S. Abbas, M. Benchohra, and E. Karapinar, Global stability results for Volterra-Hadamard random partial fractional integral equations, Rend. Circ. Mat. Palermo, series 2 2022 (2022), 1–13.
- [32] F. Brauer and C. Castillo-Chavez, Mathematical models in population biology and epidemiology, 2nd edition, Texts in Applied Mathematics, vol. 40, Springer, New York, 2012.
- [33] S. Elaydi, An introduction to difference equations, 3rd edition, Undergraduate Texts in Mathematics, Springer, New York, 2005.
- [34] A. R. Lucas, A fixed point theorem for a general epidemic model, J. Math. Anal. Appl. 404 (2013), no. 1, 135–149.
- [35] I. A. Rus, An abstract point of view in the nonlinear difference equations, Conf. on An., Functional Equations, App. And Convexity, Cluj-Napoca, October 15–16, 1999, pp. 272–276
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52fdb5e4-5380-4098-8a14-366e8baea62f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.