PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Electrokinetic and surface properties of some methacrylate-based copolymers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, some electrokinetic and surface properties of MBAOM-GMA copolymers synthesized from 2-[(methoxy-1,3-benzothiazole-2-yl) amino]-2oxoethyl methacrylate (MBAOM) and glycidyl methacrylate (GMA) monomers were investigated. Accordingly, (i) pH-dependent zeta (ζ) potential changes of the copolymers were investigated under a constant ionic strength (in 1.10-3mol/dm3 NaCl) and the corresponding isoelectric points (iep) were determined, (ii) zeta potential changes depending on the salt concentration in the presence of mono-, di- and tri-valent metal salts were examined, (iii) contact angles (θ) of the copolymers with water were measured and their wetting behavior was assessed, and (iv) surface free energies (SFE) of the copolymers were determined by Acid-Base approach using Van Oss-Chaudhury-Good method. The compositions of the copolymers were 77% MBAOM - 23% GMA, 45% MBAOM - 55% GMA, and 19% MBAOM - 81% GMA. FeCl3, CaCl2, and KCl salts were used for the salt solutions for the zeta potential measurements. As a result, (i) it was determined that the chemical structure of methacrylate copolymers showed a decisive effect on both electrokinetic and surface properties, (ii) the hydrophobic character of copolymer increased with the increase of the GMA ratio, and correspondingly, the SFE decreased, and (iii) the iep of the copolymers varied between pH 3.1-3.7 depending on composition.
Rocznik
Strony
art. no. 152162
Opis fizyczny
Bibliogr. 52 poz., rys., wykr.
Twórcy
autor
  • Afyon Kocatepe University, Mining Engineering Department, Afyonkarahisar, Turkey
  • Afyon Kocatepe University, Mining Engineering Department, Afyonkarahisar, Turkey
autor
  • Afyon Kocatepe University, Material Science and Engineering Department, Afyonkarahisar, Turkey
  • Afyon Kocatepe University, Mining Engineering Department, Afyonkarahisar, Turkey
Bibliografia
  • ABBASIAN, A., GHAFFARIAN, S.R., MOHAMMADI, N., FALLAHI, D., 2004. The contact angle of thin-uncured epoxy films, thickness effect. Colloids Surf. A: Physicochem. Eng. Aspects. 236, 133–140.
  • ADAMSON, A.W., GAST, A.P., 1997. Physical Chemistry of Surfaces (Sixth Edition). Wiley, New York.
  • ARUKALAM, I.O., OGUZIE, E.E., LI, Y., 2016. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel. J. Colloid Interface Sci. 484, 220–228.
  • ASANO, H., SHIRAISHI, Y., 2015. Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography. Analytica Chimica Acta. 883, 55–60.
  • BUSSCHER, H.J., 1992. Wettability of Surfaces in the Oral Cavity, in: Modern Approaches to Wettability (Eds: M.E., Schrader, Loeb, G.I.), Plenum Press, New York.
  • CASLAVSKA, J., THORMAN, W., 2001. Electrophoretic separations in PMMA capillaries with uniform and discontinuous buffers. J. Microcolumn Separations. 13, 69-83.
  • CHAKRADHAR, R.P.S., DINESH KUMAR, V., RAO, J.L., BASU, B.J., 2011. Fabrication of superhydrophobic surfaces based on ZnO–PDMS nanocomposite coatings and study of its wetting behavior. App. Sur. Sci. 257, 8569–8575.
  • CHEN, R., GUO, H., SHEN, Y., HU, Y., SUN, Y., 2006. Determination of eof of PMMA microfluidic chip by indirect laser-induced fluorescence detection. Sens. Actuators, B, 114(2):1100–1107.
  • CHIBOWSKI, E., TERPILOWSKI, K., 2009. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces. App. Surf. Sci. 256, 1573–1581.
  • DOBRZANSKI, L.A., 2006. Engineering Materials and Materials Design, Fundamentals of Materials Science and Physical Metallurgy, WNT, Warsaw.
  • EBNASAJJAD, S., 2011. Handbook of Adhesive and Surface Preparation (Technology, Applications and Manufacturing), Elsevier Inc., Oxford.
  • ERBIL, H.Y., 2006. Surface Chemistry of Solid and Liquid Interfaces. Blackwell Publishing Ltd, England.
  • EROL, İ., SOYKAN, C., 2002. Synthesis, characterization, and polymerization of new methacrylate esters having pendant amide moieties. J. Macromol. Sci. -Pure App. Chem. A39, 405-417.
  • EROL, İ., SOYKAN, C., 2003. Synthesis and characterization of new aryl-oxycarbonyl methyl methacrylate monomers and their polymers. React. Funct. Polym. 56, 147-157.
  • EROL, İ., DEVRIM, D.N., ÇIFTÇI, H., ERSOY, B., CIGERCI, İ.H., 2017. Novel functional copolymers based on the glycidyl methacrylate, synthesis, characterization and polymerization kinetics. J. Macromol. Sci. –Pure App. Chem. 54(7), 434-445.
  • ERSOY, B., ÇELIK, M.S., 2002. Electrokinetic properties of clinoptilolite with mono and multivalent electrolytes. Microporous Mesoporous Mat. 55, 305-312.
  • EVCIN, A., ERSOY, B., UYGUNOĞLU, T., GÜNEŞ, İ., 2018. The effect of different mineral additives on the wettability and surface energy of the epoxy floor coating material. J. Fac. Eng. Arc. Gazi Univ. 33, 581-590 (in Turkish).
  • FA, K., PARUCHURI, V., BROWN, S., MOUDGIL, B., MILLER, J.D., 2005. The significance of electrokinetic characterization for interpreting interfacial phenomena at planar, macroscopic interfaces. Phys. Chem. Chem. Phys., 7(4):678–684.
  • FALAHATI, H., WONG, L., DAVARPANAH, L., GARG, A., SCHMITZ, P., BARZ, D.P.J., 2014. The zeta potential of PMMA surfaces in contact with electrolytes of various conditions, Theoretical and experimental investigation. Electrophoresis. 35, 870-82.
  • GAO, Z., ZHAI, X., LIU, F., ZHANG, M., ZANG, D., WANG, C., 2015. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface. Carbohydr. Polym. 128, 24–31.
  • GNEDENKOV, S.V., SINEBRYUKHOV, S.L., EGORKIN, V.S., VYALIY, I.E., 2016. Wettability and electrochemical properties of the highly hydrophobic coatings on PEO-pretreated aluminum alloy. Surf. Coat. Technol. 307, 1241-1248.
  • GOOD, R.J., VAN OSS, C.J.,1992. The Modern Theory of Contact Angle and the Hydrogen Bond Components of Surface Energies in: Modern Approaches to Wettability (Eds: M.E., Schrader, Loeb, G.I.), Plenum Press, New York.
  • GÖNÜL, N., 2000. Suspension and Emulsion Technology. Ankara Univ., Ankara, Turkiye (in Turkish).
  • GÜLDIKEN, A., 2017. Synthesis and characterization of a new methacrylate polymers having pendant methoxy substituted thiazol arylamide. M.Sc. Thesis, Afyon Kocatepe Univ., Afyon, Turkiye (in Turkish).
  • HIEMENZ, P.C., 1986. Principles of Colloid and Surface Chemistry (2nd Edition), Marcel Dekker Inc., New York.
  • HÖLCK, O., BAUER, J., WITTLER, O., MICHEL, B., WUNDERLE, B., 2012. Comparative characterization of chip to epoxy interfaces by molecular modeling and contact angle determination. Microelectronics Reliability. 52, 1285–1290.
  • KAPILASHRAMI, A., ESKILSSON, K., BERGSTRÖM, L., MALMSTEN, M., 2004. Drying of oil-in-water emulsions on hydrophobic and hydrophilic substrates. Colloids Surf. A; Physicochem. Eng. Aspects. 233, 155–161.
  • KARAMAN, M., UÇAR, T., 2016. Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers. Appl. Surf. Sci. 362, 210–216.
  • KO, J.S., CHO, K., HAN, S.W., SUNG, H.K., BAEK, S.W., KOH W.G., YOON, J.S., 2017. Hydrophilic surface modification of poly(methyl methacrylate)-based ocular prostheses using poly(ethylene glycol) grafting. Colloids and Surfaces B: Biointerfaces 158, 287–294.
  • LEJA, J., Surface Chemistry of Froth Flotation (Second Edition), 1982. Plenum Press, New York.
  • LIPATOV, Y., FEINERMAN, A., 1979. Surface tension and surface free energy of polymers. Adv. Colloid Interface Sci. 11, 195-233.
  • LU, S., PUGH, R.J., FORSSBERG E., Interfacial Separation of Particles, 2005. Elsevier, Amsterdam.
  • LUNG, C.Y.K., MATINLINNA, P., 2015. Surface Pretreatment Methods and Salinization in Handbook of Oral Biomaterials, Ed. Jukka P. Matinlinna, CRC Press, London.
  • MA, Y., CAO, X., FENG, X., MA, Y., ZOU, H., 2007. Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90o. Polymer. 48(26), 7455-7460.
  • MAHABADI, K.A., RODRRIGUEZ, I., HAUR, S.C., VAN KAN, J.A., BETTIOL, A.A., WATT, F., 2006. Fabrication of PMMA micro-and nanofluidic channels by proton beam writing: Electrokinetic and morphological characterization. J. Micromech. Microeng., 16(7):1170–1180.
  • NGAI, J.H.L., JOHNNY, HO, K.W., CHAN, R.K.H., CHEUNG, S.H., LEUNG, L.M., SO, S.K., 2017. Growth, characterization, and thin film transistor application of CH3NH3PbI3 perovskite on polymeric gate dielectric layers. RSC Adv. 7, 49353- 49360.
  • REYNOLDS, P., 2005. Wetting of Surfaces in: Colloid Science (Principles, Methods and Applications) (Ed: T. Cosgrove), Blackwell Publishing Ltd., Oxford.
  • RYMUSZKA, D., TERPIŁOWSKI, K., STERNIK, D., TOMCZYNSKA-MLEKO, M., GONCHARUK, O., 2017. Ukraine wettability and thermal analysis of hydrophobic poly (methyl methacrylate)/silica nanocomposites. Ads. Sci. Technol. 35, 560–571.
  • SABAA, M.W., FARAG, Z.R., MOHAMED, N.A., 2008. Thermal Degradation Behavior of Poly (vinyl chloride) in the Presence of Poly (glycidyl methacrylate). J. App. Polym. Sci. 110, 2205-2210.
  • SAÇAK, M., 2005. Polymer Technology. Gazi kitabevi, Ankara, Turkiye (in Turkish).
  • SCHROEDER, W.F., BORRAJO, J., ARANGUREN, M.I., 2007. Poly (methyl methacrylate)-modified vinyl ester thermosets, Morphology, volume shrinkage, and mechanical properties. J. App. Polym. Sci. 106, 4007-4017.
  • SOPER, S.A., HENRY, A.C., VAIDYA, B., GALLOWAY, M., WABUYELE, M., and MC CARLEY, R.L., 2002. Surface modification of polymer-based microfluidic devices. Anal. Chim. Acta, 470(1): 87–99.
  • SYAKUR, A., BE RAHIM, H., ROCHMADI, T., 2012. Hydrophobic contact angle and surface degradation of epoxy resin compound with silicone rubber and silica. Electr. Electr. Eng. 2, 284-291.
  • TAKAHARA, A., 1992. Block Copolymers and Hydrophilicity, in: Modern Approaches to Wettability (Eds: M.E., Schrader, Loeb, G.I.), Plenum Press, New York.
  • TANDON, V., BHAGAVATULA, S.K., NELSON, W.C., KIRBY, B.J., 2008. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers, 1. The origins of charge. Electrophoresis. 29, 1092–1101.
  • TERAYA, T., TAKAHARA, A., KAJIYAMA, T., 1990. Surface chemical composition and surface molecular mobility of diblock and random copolymers with hydrophobic and hydrophilic segments. Polymer, 31(6), 1149-1153.
  • VAN DE WETERING, P., SCHUURMANS-NIEUWENBROEK, N.M.E., VAN STEENBERGEN, M.J., CROMMELIN D.J.A., HENNINK, W.E., 2000. Copolymers of 2-(dimethyl amino)ethyl methacrylate with ethoxytriethylene glycol methacrylate or N-vinyl-pyrrolidone as gene transfer agents. J. Controlled Release. 64, 193–203.
  • VAN OSS, C.J., 1994. Interface Forces in Aqueous Media. Marcel Dekker Inc., New York.
  • VAN OSS C.J., GOOD R.J., CHAUDHURY, M.K., 1986. The role of van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces. Journal of Colloid and Interface Science, 111(2), 378-390.
  • WALKER, S.L., BHATTACHARJEE, S., HOEK, E.M.V., ELIMELECH, M., 2002. A novel asymmetric clamping cell for measuring streaming potential of flat surfaces. Langmuir, 18(6): 2193–2198.
  • YAO, C.H., QI, L., JIA, H.Y., 2009. A novel glycidyl methacrylate-based monolith with sub-micron skeletons and well-defined macropores. J. Mater. Chem. 19, 767-772.
  • ZENKIEWICZ, M., 2007. Methods for the calculation of surface free energy of solids. J. Achieve Mater. Manuf. Eng. 24, 137-145.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52f5065e-575f-482a-8276-4084780b2eef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.